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recorded, colours match those described in the legend above. All values are smoothed 

using a 10-point moving average of raw data.  
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Figure 5.6: Sagittal knee scans of the femoral contact point for an a) an individual 

with Achondroplasia and b) control participant. Note: the visible lower femoral 

contact point with the tibia in Figure 5.6a. 

 

Figure 6.1: a) Schematic depicting the calculation of tendon volume using the 

truncated cone method and b) transverse ultrasound scans of the patella tendon CSA 

at 25% (top), 50% (middle) and 75% (bottom) of patella tendon length for an 

individual with Achondroplasia (Left) and control (Right) participant. 
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iMVC (b = control, d = Achondroplasia). Deep aponeurosis is highlighted along with a 
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Figure 6.3: a) proximal (top) and distal (bottom) markers that identify absolute and 

proportionally patella tendon lengths for a control participant, b) ultrasound probe 

placement that observes the proximal and reference marker (echo absorbing tape) 

for a control participant, and c) a participant with Achondroplasia in the experimental 
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Figure 6.4: Ultrasound images during patella tendon elongation measures from rest 

(top) to maximal voluntary contraction (bottom) in an individual with Achondroplasia 

(left images) and control (right images). White dots represent the measurement of 
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longer tendons that exceed the ultrasound probe’s field of view, an echo-absorptive 

marker was used as a reference point to help stitch images together (Onambélé et 

al., 2007). The boundaries of the marker are identified by the white dotted lines. 

 

Figure 6.5: Architectural properties of the vastus lateralis’ pennation angle (left) and 

fascicle length (right) in adults with Achondroplasia (grey) and controls (white) from 

rest to iMVC. * ≤ 0.05 † ≤ 0.001. 

 

Figure 6.6: Patella tendon a) Force-Elongation relationship, b) stress-strain 

relationship, and c) Young’s modulus plotted against the incremental level of iMVC 
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All figures are fitted with polynomial curves, with Figures 4a and b forced through 
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Figure 7.1: a) Plug-in-Gait marker set being positioned on a participant with 

Achondroplasia, and b) the laboratory set up (timing gates out of view) during a 

walking trial of a participant with Achondroplasia (grey panels on the floor denote 

the centre of the viewing area, i.e. coordinates 0, 0, 0). 

 

Figure 7.2: a) Stride length, b), stride time and c) stride frequency during incremental 

walking for the group with Achondroplasia (grey) and controls (black). * P ≤ 0.001 for 

between group differences. 

 



xviii 

 

Figure 7.3: Mean and SD (error bar) of discrete kinematic measures for the pelvis (P1-

7) in adults with Achondroplasia (grey) and controls (black) over a progression of 

absolute walking speeds and SSW (m·s-1). Note that SSW is presented alongside 

absolute speeds; the position of each groups respective SSW, relative to the absolute 

gait speeds, are given as the colour coded arrow along the X axis. Between group 

differences are identified using * between the means of each respective speed; 

specific P values are given in Table A1.1.  

 

Figure 7.4: Mean and SD (error bar) of discrete kinematic measures for the hip (H1-9) 

over a progression of absolute walking speeds and SSW (m·s-1) for adults with 

Achondroplasia (grey) and controls (black) Note that SSW is presented alongside 

absolute speeds; the position of each groups respective SSW, relative to the absolute 

gait speeds, are given as the colour coded arrow along the X axis. Between group 

differences are identified using * between the means of each respective speed; 

specific P values are given in Table A1.2.  

 

Figure 7.5: Mean and SD (error bar) of discrete kinematic measures for the knee (K1-

7) in adults with Achondroplasia (grey) and controls (black) over a progression of 

absolute walking speeds and SSW (m·s-1). Note that SSW is presented alongside 

absolute speeds; the position of each groups respective SSW, relative to the absolute 

gait speeds, are given as the colour coded arrow along the X axis. Between group 

differences are identified using * between the means of each respective speed; 

specific P values are given in Table A1.3.  
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Figure 7.6: Mean and SD (error bar) of discrete kinematic measures for the ankle (A1-

9) in adults with Achondroplasia (grey) and controls (black) over a progression of 

absolute walking speeds and SSW (m·s-1). Note that SSW is presented alongside 

absolute speeds; the position of each groups respective SSW, relative to the absolute 

gait speeds, are given as the colour coded arrow along the X axis. Between group 

differences are identified using * between the means of each respective speed; 

specific P values are given in Table A1.4.  

 

Figure 7.7: Movement analysis profiles of adults with Achondroplasia (grey) and 

controls (black) for one stride during different walking speeds. Total gait profile scores 

for the left and right leg and combined total is given in the rightmost columns. 

Columns represent median, while error bars represent interquartile range. Between 

group differences are given for each joint at each respective speed only and are 

denoted by: ‡ P ≤ 0.05, † P ≤ 0.01, * P ≤ 0.001. 

 

Figure 7.8: a) Stride length, b), stride time, and c) and stride frequency during 

incremental running for Achondroplasia (grey) and controls (black). * P ≤ 0.001 for 

between group differences 

 

Figure 7.9: Mean and SD (error bar) of discrete kinematic measures for the pelvis (P1-

7) in adults with Achondroplasia (grey) and controls (black) over a progression of 
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absolute running speeds (m·s-1). Between group differences are identified using * 

between the means of each respective speed; specific P values are given in Table A2.1.  

 

Figure 7.10: Mean and SD (error bar) of discrete kinematic measures for the hip (H1-

9) in adults with Achondroplasia (grey) and controls (black) over a progression of 

absolute running speeds. Between group differences are identified using * between 

the means of each respective speed; specific P values are given in Table A2.2.  

 

Figure 7.11: Mean and SD (error bar) of discrete kinematic measures for the knee (K1-

7) in adults with Achondroplasia (grey) and controls (black) over a progression of 

absolute running speeds. Between group differences are identified using * between 

the means of each respective speed; specific P values are given in Table A1.3.  

 

Figure 7.12: Mean and SD (error bar) of discrete kinematic measures for the ankle 

(A1-9) in adults with Achondroplasia (grey) and controls (black) over a progression of 

absolute running speeds. Between group differences are identified using * between 

the means of each respective speed; specific P values are given in Table A2.4.  

 

Figure 7.13: Movement analysis profiles of adults with Achondroplasia (grey) and 

control (black) for one stride during different running speeds. Individual gait variable 

scores (GVS) for the left (light grey) and right (dark grey) sides. Note that the pelvis is 

one segment and therefore is presented for the left side only. Total GVS for the left 

and right leg and the gait profile score are presented on the rightmost columns. Data 
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are presented as median and interquartile ranges. * P < 0.05, † P ≤ 0.01, ‡ P ≤ 0.001 

for between group comparisons only  

 

Figure 8.1: A flow diagram showing the main findings of each of the present thesis’ 

chapters that are possibly manifested from the mutated fibroblast growth factor 

receptor 3 gene that causes Achondroplasia. All main findings are significant (P ≤ 

0.05) unless stated. Abbreviations: FGFR3, fibroblast growth factor receptor 3; BMC, 

bone mineral content; BMD, bone mineral density; BF%, body fat percentage; FFM, 

fat free mass; iMVCτ, isometric maximal voluntary contraction torque; KE, knee 

extension, CSAPT, cross sectional area of the patella tendon; iMVC, isometric maximal 

voluntary contraction; V̇O2max, maximal oxygen consumption; GPS, gait profile score; 

V̇O2, oxygen consumption 

 

Figure 8.2: Sagittal view of the mean position Plug-in-Gait (PiG) marker for individuals 

with Achondroplasia (left) and control (right). Black circles represent the respective 

bony landmarks the hip joint centre (HJC) or the PiG model while white circles 

represents segment markers used for rotational variables. For the example of the 

group with Achondroplasia (left), the dark grey circles represent the estimated HJC 

from the equations presented by Broström et al. (2009) and the light grey circles 

represent the estimated HJC based on the palpable greater trochanter. Solid lines 

represent respective segments, from which joint angles are calculated and dotted line 

represents the estimated thigh segments based on the HJC prediction from Broström 

et al. (2009) and the palpable greater trochanter. 
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Figure A2.1: An example of the Plug in Gait Marker set for one control. Descriptions 

of the placement for each marker are given in Table A2.1. Note: this figure includes 

an ‘L’ and an ‘R’ in front of the marker acronym to define the left and right side, 

respectively. In some cases, tape (Zinc Oxide) was used to keep clothing from 

obstructing markers. 

 

Figure A4.1: Kinematic variations of a) pelvis, b) hip, c) knee, and d) ankle over the 

same complete stride (%) for the i) sagittal, ii) frontal, and iii) transverse planes. Grey 

solid line with grey shading represents the mean (SD) of the group with 

Achondroplasia, while white solid line with black shading represents the control 

group’s mean (SD), respectively. Temporal events are displayed at the bottom of each 

trio of graphs displaying the: top line) left contact time and bottom line) right contact 

time. Grey is Achondroplasia and black control. Vertical lines represent the respective 

heel contact and toe off points for each leg and are provided for visual interpretation. 

 

Figure A4.2: Angle-angle plots showing the kinematic pattern of a) knee flexion and 

pelvic tilt, b) knee flexion and hip flexion/extension, and, c) knee flexion and ankle 

planta/dorsiflexion during an entire stride (%). Grey and black lines represent the 

respective mean of the group with Achondroplasia and controls. Solid dot is initial 

heel contact, open dot is toe off and dashed line is the period of stance time, 

respectively. Arrows represent the direction of angular change. 
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Abstract 

Skeletal dysplasia is an umbrella term used to describe individuals with an 

abnormality to the skeleton. There are more than 350 reported skeletal dysplasias 

with the more common name for the term being ‘dwarfism’. The prevalence of 

skeletal dysplasia is around 1/5000 child births (Bonafe et al., 2015), the most 

common form of which being Achondroplasia (Krakow and Rimoin, 2010). Individuals 

with Achondroplasia are termed ‘rhizomelic’ (i.e. distal appendicular segments are 

longer than the adjoining proximal segments) and have a disproportionate limb 

length-to-torso ratio compared to age matched adults of average stature (controls). 

Average stature of an adult male with Achondroplasia is ~1.30 m while females with 

Achondroplasia are ~1.25 m (Horton et al., 1977; Hunter et al., 1996). The cause of 

Achondroplasia is well documented and is attributed to a mutation in the fibroblast 

growth factor receptor 3 (FGFR3) during foetal growth (Bellus et al., 1995b; Bellus et 

al., 1995a; Horton and Lunstrum, 2002; Horton, 2006; Horton et al., 2007). Medical 

and psychological complications associated with Achondroplasia are described, but 

no data exist on the physiological or biomechanical descriptions of the condition. The 

aim of this thesis was therefore to quantify the neuromuscular and biomechanical 

properties of adults with Achondroplasia. Specifically, this would be achieved by 

measuring: in vivo total-body and segment composition; maximal oxygen 

consumption (V̇O2max); submaximal oxygen consumption (V̇O2) and metabolic cost 

(C) during incremental exercise; neuromuscular and biomechanical properties of 

muscle and tendon during isometric maximal voluntary contraction (iMVC), and; 
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lower limb and centre of mass (CoM) kinematics during a range of walking and 

running speeds, all of which would be compared to controls.  

 

Results showed that the adult group with Achondroplasia had disproportionate legs 

and arms lengths compared to torso length but were not rhizomelic. Total-body 

mass, bone mineral content, bone mineral density and fat free mas was lower in the 

group with Achondroplasia compared to controls. Fat mass however, was higher in 

the group with Achondroplasia than controls when relative to total-body values; 

differences in body composition values were lessened somewhat when relative to 

total-limb values. A lower absolute V̇O2max  was observed in the group with 

Achondroplasia when compared to controls. This difference was removed when 

presented relative to total-body mass and fat free mass. The group with 

Achondroplasia had a higher V̇O2  and C than controls at all walking and running 

speeds, with a persistent higher C being observed when normalised to total-body 

mass and leg length. The group with Achondroplasia were weaker than controls 

when presented as absolute values and when accounting for biomechanical and 

physiological properties (here as specific force). Furthermore, a more compliant 

patella tendon during iMVC was observed in the group with Achondroplasia 

compared to controls. Following three-dimensional gait analysis, a number of 

discrete differences in joint kinematics existed between groups when walking and 

running, resulting in the group with Achondroplasia being more ‘flexed’ than controls 

throughout the walking and running stride. A global analysis of gait kinematics (here 

as gait profile score) showed that the gait of individuals with Achondroplasia 



xxxii 

 

quantifiably different to controls during walking, with a more similar gait pattern 

being observed between groups when running. 

 

Body morphology differences between the groups helped normalise the differences 

in a number of functional measures. However, the persistently higher C in individuals 

with Achondroplasia during walking and running is likely due to the combination of 

their lower force development of the knee extensors, their more compliant patella 

tendon and differences in their gait kinematics compared to controls.



  

 

 

 

 

 

 

 

 

Chapter 1: Literature review 
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1.1 Introduction to Dwarfism  

Skeletal dysplasia is an umbrella term used to describe a range of disorders that 

affect the developing bone or cartilage in foetal growth and adolescence (Krakow 

and Rimoin, 2010). There are a reported 372 skeletal dysplasias which are defined by 

radiographic, biochemical and/or by molecular differences, of which dwarfism is the 

most common trait (Superti-Furga and Unger, 2007; Bonafe et al., 2015). Dwarfism 

is primarily characterised by short stature with an individual’s body being either 

disproportionate (i.e. shorter or longer limbs relative to torso length) or 

proportionate (i.e. limbs and torso are smaller but in proportion to that of an average 

statured person) (Nehme et al., 1976; Hecht et al., 1987; Hecht et al., 1988; Hunter 

et al., 1996a; Horton and Lunstrum, 2002; Horton et al., 2007). Achondroplasia is the 

most prevalent dwarfism within humans, affecting between 1/10,000 and 1/30,000 

live births (Horton et al., 2007; Superti-Furga and Unger, 2007; Krakow and Rimoin, 

2010).  

 

1.1.1 An overview of Achondroplasia 

Achondroplasia was identified as having a genetic link in the 1960’s (Langer Jr et al., 

1968) but it was not until the 1990’s where the locus of mutation was mapped to 

chromosome 4p16.3 (Rousseau et al., 1994; Shiang et al., 1994; Bellus et al., 1995a). 

Further work has since identified a mutation to fibroblast growth factor receptor 3 

(FGFR3) as the cause of Achondroplasia (Bellus et al., 1995b; Tavormina et al., 1999).  

FGFR3 is one of four fibroblast growth factors (FGFR1-4) that are found in mammals 

(Ornitz and Marie, 2002). All have an extracellular ligand-binding domain, a 
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transmembrane domain and an intracellular domain containing a split tyrosine 

kinase subdomain. The differing aspects of the receptors are their spatial and 

temporal distribution, with FGFR3 being expressed later in embryonic development 

(Delezoide et al., 1998). Similar mutations occur within FGFR1-4, with an amino acid 

substitution of Gly380Arg in the transmembrane domain being the predominate 

cause of Achondroplasia. The penetrance of the Gly380Arg mutation is 100% (Horton 

et al., 2007) while a mutation of Gly375Cys has also been linked to Achondroplasia 

(Superti-Furga et al., 1995). 

 

In non-chondrocytic cells, such as the colon and bladder, FGFR3 promotes mitosis 

(Jang et al., 2001), whereas in the growth plates of chondrocytes the effect is 

converse. Linear bone growth is regulated by FGFR3, acting as an inhibitor to the 

proliferation and differentiation of growth plate chondrocytes (Deng et al., 1996). 

The mutated FGFR3 that causes Achondroplasia amplifies the signalling of the 

cellular pathway, stunting bone growth. As described in Horton (2007), and shown in 

Figure 1.1, there are four main signalling pathways FGFR3 code for: signal transducer 

and activator of transcription 1 (STAT1); mitogen activated protein kinase (MAPK); 

phospholipase C y (PLCy), and; phosphatidylinositol phosphate-3-kinase-

serine/threonine kinase and protein kinase B (PI3K-AKT). STAT1 is described to inhibit 

chondrocyte proliferation (Sahni et al., 1999), while MAPK adversely affects terminal 

differentiation, proliferation and post-mitotic matrix synthesis via p38 and 

extracellular signal-regulated kinase pathways (Murakami et al., 2004). 

Consequentially, the phenotypes of an individual with Achondroplasia are significant 

non-linear bone growth and reduced bone length. While the genetic differences to 
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individuals without Achondroplasia and individuals with other types of skeletal 

dysplasia are well established, there are few valid reports on the anthropometric 

variation of skeletal dysplasic conditions and even fewer reports on the functional 

ability of individuals with Achondroplasia compared to age matched able bodied 

individuals (hereafter referred to as ‘controls’).  

 

 

Figure 1.1: Signalling pathways of FGFR3 most relevant to growth plate 

Chondrocytes. FGFR3 signals propagated through STAT1, MAPK-ERK, MAPK-p38, and 

other pathways inhibit chondrocyte proliferation, post-mitotic matrix synthesis, and 

terminal (hypertrophic) differentiation. The CNP-NPR-B pathway inhibits the MAPK 

pathways. Based on the work by Horton (2006) and taken from Horton (2007). 
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Individuals with Achondroplasia are classed as having a physical disability (Haga, 

2004) with Longmuir and Bar-Or (2000) describing people with disabilities as being 

less physically active than abled bodied individuals. Longmuir and Bar-Or’s (2000) 

grouping of ‘physical impairment’ does not incorporate individuals with 

Achondroplasia, but based on the definitions by Wheeler et al. (2003) and the 

description of the condition by Haga (2004), individuals with Achondroplasia would 

be classed in this bracket. The amount of physical activity that individuals with 

Achondroplasia undertake is unknown. Able-bodied people that are less physically 

active exhibit increased fat mass and reduced muscle mass compared to more 

physically active counterparts (Janssen et al., 2002; Rolland et al., 2007). Higher fat 

mass has been attributed with greater overall body loading however, and therefore 

greater absolute muscle mass (Tomlinson et al., 2014a). Furthermore, able-bodied 

individuals who are less physically exhibit a reduction in maximal oxygen 

consumption (V̇O2max) (Laaksonen et al., 2002), maximal voluntary contraction of 

muscle (MVC) and tendon compliance compared to those that are more physically 

active (Reeves et al., 2003a; Morse et al., 2007b). Measures such as these can be 

used as predictors of health status and risk of clinical conditions, such as the 

metabolic syndrome (Wennberg et al., 2013). Furthermore, reduced strength and 

lower tendon compliance can negatively impact V̇O2 and metabolic cost (C) during 

walking and running (Saunders et al., 2004; Fletcher et al., 2010), all of which are 

unreported in adults with Achondroplasia. 
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To place an individual on a health continuum, a large reference database that closely 

matches that of the individual is required to make an informed evaluation. For 

example, body mass index (BMI) is one such variable that is affected by the 

morphology of Achondroplasia. BMI incorporates total-body mass (TBM) and stature 

into its calculation. Although the TBM of an individual with Achondroplasia is lower 

than controls (Hecht et al., 1988; Hunter et al., 1996a; Hoover-Fong et al., 2007), the 

difference in stature between individuals with Achondroplasia and controls appears 

to be greater than the difference in body mass between the groups. Individuals with 

Achondroplasia are ~25% shorter and ~21% lighter than that of age matched (16-

years-old) average statured individuals (Nehme et al., 1976; Hecht et al., 1988; 

Hoover-Fong et al., 2007). Thus, BMI is skewed and categorises individuals with 

Achondroplasia as ‘obese’ on BMI scales derived from able-bodied controls (Owen 

et al., 1990; Hunter et al., 1996a; Hoover-Fong et al., 2007). Given the 

disproportionate anthropometric measures of individuals with Achondroplasia 

compared to controls, appropriate presentations of any anthropometric, 

physiological, neuromuscular or biomechanical data is required to give an accurate 

representation of individuals with Achondroplasia relative to controls. For example, 

in shorter statured groups, fat free mass (FFM) and muscle volume are useful to 

present relative values of V̇O2max and MVC (Bottinelli et al., 1997; Y. J. Janssen et al., 

1999; Goran et al., 2000; Tolfrey et al., 2006; Morse et al., 2008; O’Brien et al., 2010c; 

O’Brien et al., 2010d; Dencker et al., 2011; Lolli et al., 2017), whereas leg length is a 

useful scaling factor for gait speed (Holt et al., 1991; Hof, 1996; Steudel-Numbers and 

Tilkens, 2004; Vaughan and O’Malley, 2005; Steudel-Numbers et al., 2007). 

 



 7 

To date, there do not appear to be extensive anthropometric, physiological, 

neuromuscular or biomechanical data for adults with Achondroplasia. Particularly, 

accurate assessment of total-body and segmental composition of lean body mass 

(LBM), bone mineral content and density (BMC and BMD respectively) and body fat 

percentage (BF%), using methods such as dual X-ray absorptiometry (DEXA), would 

help enhance the clinical definition of Achondroplasia. In addition, any improvement 

of the perceived physical limitations associated with the Achondroplasia is centred 

predominantly around increasing the individual’s stature which involves invasive 

surgical procedures with relatively minor gains in stature (Aldegheri et al., 1988; 

Cattaneo et al., 1988; Price, 1989; Horton et al., 1992; Nishi et al., 1993; Ganel and 

Horoszowski, 1996; Shohat et al., 1996; Yasui et al., 1997; Seino et al., 2000; 

Aldegheri and Dall'Oca, 2001; Vaidya et al., 2006; Tanaka et al., 2010; Park et al., 

2015). Such interventions are based entirely on the outcome measure of ‘increasing 

stature’ and very few comment on the functional aspects of individuals with 

Achondroplasia pre- or post-operative measures. Therefore, any functional 

measures, such as oxygen uptake (V̇O2) during graded exercise, neuromuscular and 

morphological properties and tendon compliance during MVC or gait analyses pre-

operation would undoubtedly aid in a desired outcome of the condition, or even 

improvement of quality of life, following surgery, if indeed surgery is warranted. 

 

The aim of this review is therefore to discuss and critically analyse the available 

anthropometric data for populations with Achondroplasia. With a lack of available 

functional data in populations with Achondroplasia, other shorter stature related 

populations will be discussed and critically analysed in relation to how stature may 
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influence physical function. Where possible, data related to populations with 

Achondroplasia will be reviewed.  

 

1.2 Anthropometry 

Anthropometry is a discipline associated with the measurement of physical 

characteristics of the human body. The primary purpose is to understand the 

variation that exists between individuals or groups of different anecdotal, physical or 

medical states (Utkualp and Ercan, 2015). There is a wealth of anthropometric 

knowledge of the able bodied and average statured human body, yet there are 

limited empirical anthropometric measures of adults with Achondroplasia. Shorter 

stature is the overwhelming phenotype for individuals with Achondroplasia which is 

the manifestation of the mutated of FGFR3 gene (Horton et al., 2007; Superti-Furga 

and Unger, 2007; Krakow and Rimoin, 2010; Bonafe et al., 2015). For most cohorts, 

a shorter stature incurs a lower TBM and therefore a lower value to some, or all, 

derivatives of TBM, such as LBM, BF% and bone mass. Measures of limb lengths in 

ages 3-18 yrs (Nehme et al., 1976; Horton et al., 1978a; Owen et al., 1990), stature 

during maturation (Ponseti, 1970; Horton et al., 1978a), mass-to-stature (Hunter et 

al., 1996a) and mass-to-age (Hoover-Fong et al., 2007) are presented for juvenile and 

adolescent populations with Achondroplasia. BMD data (Arita et al., 2013; Taşoğlu 

et al., 2014; Matsushita et al., 2016) and skinfold thickness estimates (Hecht et al., 

1988; Owen et al., 1990) also exist for adults with Achondroplasia. The following 

sections within anthropometry will therefore critically evaluate the available data on 

the limb lengths of populations with Achondroplasia and in turn discuss how limb 
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lengths may affect the composition and distribution of their TBM and segmental 

masses. 

 

1.2.1 Limb length and mass 

The average stature of a fully mature male and female with Achondroplasia is ~1.31 

and ~1.24 m respectively (LP, 2015). Despite the clear stature differences, 

Achondroplasia is referred to as a ‘rhizolemic’ condition, a term which refers to 

disproportionate appendicular segment lengths (i.e. upper arms and thighs are 

shorter than forearms and shanks) and therefore a disproportionate limb-to-torso 

length ratio relative to controls (Ponseti, 1970; Hoover-Fong et al., 2007; Horton et 

al., 2007; Krakow and Rimoin, 2010). For individuals with Achondroplasia, leg length 

is of particular importance as this not only defines some of the individual’s stature, 

but also determines gait speed. Despite this, there only appears to be two papers 

which quantify the length of lower limb segments in individuals with Achondroplasia. 

Nehme et al. (1976) provided femur and tibia lengths in males and females with 

Achondroplasia aged between 3 and 18-years-old, while Horton et al. (1978a) 

measured total-limb length in 403 males and females with Achondroplasia. Both 

papers confirmed a shorter appendicular limb in the groups with Achondroplasia 

compared to controls, with Nemhe showing that their groups with Achondroplasia 

were ~8 standard deviations below controls. Horton showed that the leg lengths of 

18-year-olds with Achondroplasia were ~0.30 m shorter than controls (~0.50 m and 

~0.80 m, respectively). These data undoubtedly show that lower limb length was the 

determining factor of shorter stature of individuals with Achondroplasia compared 

to controls. Nemhe’s paper partially confirmed the rhizolemic lengths between thigh 
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and shank in that tibias are longer than femurs in individuals with Achondroplasia. 

Horton et al. however, measured total-limb length in individuals with Achondroplasia 

and did not present comparative data. Despite the overwhelming difference in limb 

length between individuals with Achondroplasia and controls presented by Nemhe 

et al. and Horton et al., the quantification of limb length in both papers are dubious 

as the methodologies are somewhat flawed. These methodological limitations are 

expanded upon below. 

 

Firstly, Horton et al. (1978b) did not describe the method used to measure limb 

lengths, only that “measurements of total height, upper and lower segment” were 

made, and that “most of the measurements were casual and retrospective”. Nemhe 

et al. (1976) on the other hand used x-rays to measure limb length in individuals with 

Achondroplasia. Anecdotally, the standing position of an individual with 

Achondroplasia is different to that of a control (Ponseti, 1970). This is likely to affect 

the perspective error of the measured bones in a single plane, but this was not 

highlighted on by Nemhe. Secondly, Horton and colleagues included 403 individuals 

with Achondroplasia that included 189 males between the ages of 2 and 18-years-

old. Assuming the participants were equally distributed within this age range, most 

would have been pre-mid pubertal, and very few classified as post-pubertal or adult. 

This was similar to Nemhe’s study which included only three individuals with 

Achondroplasia that were between 15 and 18-years-old, thus not providing 

substantial data for the mature adult with Achondroplasia. Lastly, Nemhe et al. only 

presented data as standard deviations (SD) and did not report the absolute limb 

length of any age group nor were any inferential statistics performed on these data. 
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While segment lengths of individuals with Achondroplasia is well beyond the 1.96 SD 

needed for a significant difference against control limb length, to confirm the 

rhizomelic presentation of limb length, statistical analysis would have been useful. 

Horton et al. (1978b) did provide mean (SD) data for their group with Achondroplasia 

and controls, but did not provide any group demographics for either, nor were any 

inferential statistical analyses conducted in this study and therefore omitted any 

description of age groups. 

 

Whilst there are large differences in leg length and therefore stature between 

individuals with Achondroplasia and controls, the differences between the groups’ 

TBM is much smaller, with individuals with Achondroplasia being ~1.5 SD lighter than 

controls (Hoover-Fong et al., 2007). Clinically, the disproportionate stature and mass 

differences between individuals with Achondroplasia and controls make direct 

comparisons between groups descriptively important, but functionally irrelevant. For 

example, the disproportionate mass to stature in individuals with Achondroplasia 

lead to a BMI calculation that misclassifies the weight category of the individual. 

Currently, BMI classify a large proportion of the population with Achondroplasia as 

‘obese’ or ‘over-weight’, but this is based on control observations (Owen et al., 1990; 

Hunter et al., 1996a; Matsushita et al., 2016). Functional measures in individuals with 

Achondroplasia, such as V̇O2  during walking, may also be misinterpreted when 

compared to controls due to the TBM differences between groups. Furthermore the 

conversion of the same V̇O2 into the C will be affected by the shorter legs of the 

individuals with Achondroplasia length (Holt et al., 1991; Minetti et al., 1994; Hof, 

1996; Minetti et al., 2000; Vaughan and O’Malley, 2005). Presenting functional 
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measures relative to stature or TBM alone overlooks the fundamental 

disproportionate mass and stature differences between groups with Achondroplasia 

and controls. Total, and segmental, body mass are used widely as scaling factors 

during functional measures in controls, but as discussed above, may not be 

appropriate to present relative functional measures in individuals with 

Achondroplasia. To make more valid conclusions of functional measures or to define 

health statuses in individuals with Achondroplasia, using the constituent 

compositions of the individual’s TBM and segment mass as a scaling factor would be 

appropriate to help classify health status. The subsequent section outlines other 

anthropometric factors that are meaningful in clinical and functional comparisons. 

 

1.3 Body composition 

Obesity is a growing epidemic in western civilisation and is associated with numerous 

cardiovascular conditions and physical impairments which affect functional 

measures such as muscle strength and gait (Browning et al., 2006; Browning et al., 

2007; Tomlinson et al., 2014a). Measures of body composition, primarily body fat 

accumulation, can help predict risk of cardiovascular disease, metabolic syndrome 

and reduced life expectancy (Després et al., 2006; Després, 2006; Schneider et al., 

2006; Brambilla et al., 2013; Freedman et al., 2013). It is generally accepted that 

populations with Achondroplasia are ‘obese’ (Hecht et al., 1988; Owen et al., 1990; 

Hunter et al., 1996a; Hoover-Fong et al., 2007; Horton et al., 2007), but many of the 

current classifications of obesity in populations with Achondroplasia are based on 

BMI rather than body composition measures. Given the disproportionate mass-to-
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stature in individuals with Achondroplasia compared to controls, and the lack of 

reliable direct measures of BF% or fat mass distribution in in the population, current 

classifications of obesity in individuals with Achondroplasia may be inaccurate. The 

following section will therefore outline the current methods adopted for measuring 

body composition, specifically BF%, BMC and muscle mass in individuals with 

Achondroplasia.  

 

1.3.1 Body mass index 

A commonly used measure of estimating one’s health status in relation to adiposity 

is BMI (Brambilla et al., 2013; Lo et al., 2016). Calculated as the ratio of TBM to 

stature2, BMI is arguably a valid non-invasive estimate of body fat in average statured 

individuals (Gallagher et al., 1996). Due to the denominator of BMI being stature 

however, any abnormalities in this value, such as that seen in individuals with 

Achondroplasia, lead to higher values of BMI. Hunter et al. (1996a) showed that the 

BMI of 409 children with Achondroplasia were consistently above the 97th percentile 

range of the general population. More recently, Hoover-Fong et al. (2007) produced 

a BMI curve including 280 children with Achondroplasia, with results again 

consistently showing that the BMI of children with Achondroplasia was greater than 

50% of controls. However, the BF% of the participants included in Hoover-Fong’s 

paper was not reported.  

 

There is a large amount of BMI data on prepubescent and maturing children with 

Achondroplasia, but little is available for the adult population. From the available 

data in adults (~26-years-old) with Achondroplasia, males and females have a BMI 
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~30 kg·m-2 (Owen et al., 1990; Matsushita et al., 2016). A separate case study by 

Taşoğlu et al. (2014) however, reported a 39-year-old female with Achondroplasia 

had a BMI of 24.3 kg·m-2 (Table 1.1). Given the differences BMI between ages and 

sexes in control populations, the BMI value for this individual was surprisingly lower 

than the populations with Achondroplasia included in Owen et al. (1990) and 

Matsushita et al. (2016). It is pertinent to note though, that the individual with 

Achondroplasia in Taşoğlu et al. (2014) had undergone leg lengthening. The 

denominator of the BMI equation was therefore larger for this individual, thus 

lowering their BMI value. This only emphasises the fact that BMI is an inappropriate 

measure for populations with Achondroplasia.  

 

The BMI results from above suggest that adults with Achondroplasia are ‘overweight’ 

(25 – 29.9 kg·m-2), with some being classed as ‘obese’ (≥ 30 kg·m-2) (Kelly et al., 2008). 

With the BMI scale being based on data from averaged statured populations though, 

the simple method of using anthropometry to describe heath status becomes invalid 

for the populations with Achondroplasia. Therefore, other methods of attaining 

total-body or regional body composition in individuals with Achondroplasia, such as 

BF%, would be more appropriate than the conventional BMI measures.  
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Table 1.1: Comparisons of anthropometric measures made in individuals with 

Achondroplasia available in the literature. Data given as mean or mean (SD). 

Citation N Sex (M/F) Age (yrs) 
Stature 

(m) 
Mass 
(kg) 

BMI (kg·m-2) 

Hecht et al. (1988) 9 M * 0 - 2 0.749 ‡ 11.8 † 21.1 (3.2) † 
 13 M * 3 - 4 0.866 ‡ 15.8 † 21.0 (4.2) † 
 7 M * 5 - 6 0.927 ‡ 18.2 † 21.2 (1.8) † 
 6 M * 7 - 8 1.021 ‡ 21.7 † 20.8 (2.6) † 
 12 M * 9 - 10 1.03 ‡ 27.1 † 25.4 (8.4) † 
 9 M * 11 - 12 1.19 ‡ 33.0 † 23.3 (2.1) † 
 11 M * 13 - 14 1.32 ‡ 40.4 † 23.2 (3.1) † 
 16 M * 15 - 16 1.29 ‡ 46.8 † 28.0 (7.5) † 
 11 M * 17 - 18 1.33 ‡ 51.2 † 28.9 (30.1) † 
 47 M * > 19   32.1 (5.0) † 

Owen et al. (1990) 15 M * 30 (6) 
1.36 

(0.05) 
57.7 

(14.2) 
31 (7) 

Hunter et al. (1996)    50 4.1 † 16.5 ‡ 
    60 6.7 † 18.6 ‡ 
    70 9.6 † 19.5 ‡ 
    80 12.7 † 19.8 ‡ 
    90 16.4 † 20.3 ‡ 
    100 35.9 † 35.9 ‡ 
    110 28.6 † 23.6 ‡ 
    120 39.5 † 27.4 ‡ 
    130 54.4 † 32.2 ‡ 
    140 61.0 † 31.1 ‡ 

Hoover-Fong et al. 
(2007) 

 M * 16  50.1 †  

Arita et al. (2013) 11 6 M 5 F 40 (8)   

NBMD 33.2 
(9.4) 

LBMD 34.3 
(5.6 

Taşoğlu et al. 
(2014) 

1 F 39 1.25 38 24.3 

Matsushita et al. 
(2016) 

18 
9 M 
9 F 

M 17 (7) 
F 22 (9) 

  M 24.5 (4.4) 
F 23.2 (4.8) 

M, males; F, females; M *, males and females included in original study, but only males 
included in this table; †, estimated using ImageJ; ‡, calculated from estimated means; 
NBMD, normal bone mineral density; LBMD, low bone mineral density 
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1.3.2 Adiposity 

Adiposity is the amount of fat mass a person has in the body and can be presented 

as a TBM value but is more commonly given as a BF%; throughout this Chapter fat 

mass is referred to as BF%, unless stated. Numerous methods have been developed 

to assess in vivo BF% in average statured able-bodied populations. Whilst this list is 

not exhaustive, commonly used techniques include: three-to-nine site skinfold 

assessments (Durnin and Womersley, 1974; Jackson and Pollock, 1985; J. Wang et 

al., 1994), bioelectrical impedance (Kyle et al., 2004) and absorptiometry (Levine et 

al., 2000; Glickman et al., 2004). For individuals with Achondroplasia, absorptiometry 

may be the only valid measure of BF% from the above list. For example, skinfold 

assessments were developed in proportionally sized individuals and therefore pose 

two main issues when used in individuals with Achondroplasia. Firstly, the accuracy 

in identifying anatomical landmarks in individuals with Achondroplasia is likely to be 

lower than for controls due to the irregular growth of their endplates. Secondly, the 

assessment of fat mass using skinfolds is done using known distributions of fat in the 

control body; distributions of which are currently unavailable in individuals with 

Achondroplasia. Combining these factors would only increase error when converting 

sum of skinfolds from individuals with Achondroplasia into BF%. Despite this, skinfold 

measures have been used to calculate BF% in populations with Achondroplasia 

(Hecht et al., 1988; Owen et al., 1990).  

 

Although Hecht et al. (1988) were the first to measure skinfold thickness in 

individuals with Achondroplasia, Owen et al. (1990) were the first to attempt to 

predict BF% using skinfold measures in adults with Achondroplasia (30 (6) year-olds, 
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~20% body fat). Owen et al. compared skinfold measures to hydrostatic weighing in 

their group with Achondroplasia and found the methods to be very close, with 

hydrostatic weighing giving an average ~21% body fat in the same group. The 

similarity between these methods are unsurprising since skinfold measures are 

based on regression equations derived from underwater densitometry measures 

(Durnin and Womersley, 1974; Jackson and Pollock, 1985). Hunter et al. (1996a) 

followed suit by measuring the skinfold thickness in the scapula, abdominal and 

triceps of 409 individuals with Achondroplasia, but did not report on the BF%, instead 

total skinfold measures were correlated with stature and mass. Unsurprisingly, the 

total skinfold measures of the individuals with Achondroplasia correlated well with 

mass but not stature. Owen et al.’s work is useful as it appears to be the only study 

to report BF% estimates in any adult group with Achondroplasia. However, the large 

confidence intervals of skinfold methods reported by Jackson and Pollock (1985), 

whose method was used by Hunter et al. and Owen et al., may somewhat under- or 

over predict the actual BF% in their respective groups with Achondroplasia. This was 

partially observed by Owen et al., as BF% in their male group with Achondroplasia 

varied by 33-88%. With such a large variance in predicted BF% using skinfolds, an 

absorptiometry estimate, such as that given by DEXA would give a more valid 

measure of BF% compared to skinfold measures in individuals with Achondroplasia.  

 

Individuals with Achondroplasia are more likely to be classed as ‘over-weight’ or 

‘obese’ and with their limb and torso lengths being disproportionate compared to 

controls (Hecht et al., 1988; Owen et al., 1990; Hunter et al., 1996a), the distribution 

of their BF% is likely to be different throughout their body compared to controls. It 
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would therefore be useful to provide a breakdown of individual body segment 

parameters (BSPs) comprising of LBM, BMC, BMD and BF% from groups with 

Achondroplasia. Such data would help in more accurately defining clinical states for 

populations with Achondroplasia. For example, android-gynoid ratio of abdomen 

adiposity is linked to cardiovascular disease risk in controls (Samsell et al., 2014; 

Okosun et al., 2015), but unknown in individuals with Achondroplasia. Therefore, 

segmental analysis may be better at indicating, or comparing, health statuses when 

comparing to controls’ data. Furthermore, segmental data could be used to 

appropriately normalise functional measures of individuals with Achondroplasia to 

controls. For example, using FFM, calculated by subtracting BMC from LBM, is a 

useful tool to present V̇O2 when comparing different body morphologies (Goran et 

al., 2000; Tolfrey et al., 2006; Dencker et al., 2011; Lolli et al., 2017).  

 

DEXA affords the ability to assess total-body and BSPs more accurately than other 

methods (Durkin and Dowling, 2003; Glickman et al., 2004). DEXA provides additional 

data on BMC and LBM, which can be used to indicate osteoporotic and sarcopenic 

states, respectively (Després et al., 1990; Després et al., 2006; Després, 2006; 

Bianchi, 2007; Bolotin, 2007). To date, DEXA has not been used for the measurement 

of total-body BF% in adult groups with Achondroplasia, nor to measure BSPs in the 

same groups. Given that the condition Achondroplasia is defined in part by bone 

formation, assessment of bone quality using DEXA would also be invaluable for the 

maintenance of bone health in the condition.  
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1.3.3 Bone mineral density  

An estimate of bone fracture risk, through the measurement of BMD, is based on age 

and sexed matched comparisons and can be assessed in numerous ways, most 

commonly using DEXA (Kröger et al., 1995; Genant et al., 1996). Despite the 

knowledge that the genetic mutation that causes Achondroplasia is associated with 

impaired growth and development of long bones, there is very limited understanding 

of how FGFR3 influences measures of ‘bone quality’, here defined as BMD. It appears 

that only three studies have measured BMD in individuals with Achondroplasia. Arita 

et al. (2013) and Matsushita et al. (2016) measured BMD of the lumbar vertebra (L1-

4) of 11 and 18 individuals with Achondroplasia respectively; Arita also measured 

BMD of the mandible in a mixed sexed cohort. Matsushita et al. (2016) identified that 

the average Z-score of the individuals with Achondroplasia was -1.1 below that of 

controls whereas Arita et al. (2013) showed that only 6 of the 11 participants with 

Achondroplasia were of a ‘normal’ range. Taşoğlu et al. (2014) provided a three-year 

case report of a 39-year-old female with Achondroplasia and showed that her BMD 

Z-scores were consistently lower the 3-year period (-1.6 to -1.7). The collective 

results suggest individuals with Achondroplasia would be considered ‘osteopenic’ or 

‘osteoporotic’ when compared to controls (T. L. Kelly et al., 2009).  

 

While DEXA is an accurate measure of BMD, this measurement is a ratio between the 

measured BMC and the viewable area (given as g·cm-2). Indeed, it is likely that less 

BMC would be presented in individuals with Achondroplasia compared to age 

matched controls due to the genetic mutation affecting bone development. Given 

that areal BMD (g×cm-2) is dependent on bone size and bone content, it is likely that 
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comparisons to controls will be lower due to the lower bone mass and therefore 

lower BMC of individuals with Achondroplasia. Volumetric measures of BMD 

(BMDVOL) however, is a more appropriate scalar of BMC as the depth of bone is taken 

into consideration (Bianchi, 2007). Particularly for cylindrical shaped bones, such as 

the lumbar vertebrae, BMDVOL calculations are a more valid method of normalising 

BMD values between groups of different sizes (Jergas et al., 1995; Kröger et al., 1995; 

Lang et al., 1997). While vertebral BMD is available in groups with Achondroplasia, 

BMDVOL observations appear not to have been made. Furthermore, no total-body 

measure of BMD has been made in any cohort of individuals with Achondroplasia 

using any technique. Certainly, a normalised method of BMD, such as BMDVOL, would 

help identify any fracture risk in groups with Achondroplasia compared to controls. 

A normative total-body BMD data set is required for populations with 

Achondroplasia though, so that informed comparisons within the group can be 

made. These data do not currently exist. 

 

1.3.4 Lean body mass 

As discussed in the previous section, there is a positive correlation between 

measurements of stature and mass in populations with Achondroplasia and controls 

(Ponseti, 1970; Nehme et al., 1976; Hecht et al., 1988; Hunter et al., 1996a; Hoover-

Fong et al., 2007). For a control individual, around 70% of their TBM is LBM and 

consists of muscle, tissue and bone mass (Imboden et al., 2017). LBM is measurable 

with the use of DEXA, which can also present LBM without BMC, allowing for an 

estimation of FFM. Roughly 58% of TBM is FFM with muscle mass contributing to 
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~37% of TBM (Clarys et al., 1984). For this and proceeding sections, muscle mass will 

be referred to as ‘FFM’ (i.e. LBM – BMC), while combined LBM and BMC will be 

referred to as ‘LBM’.  

 

An accurate estimation of FFM is useful for both clinical and functional measures. For 

instance, sarcopenia is defined by FFM, while force production can be correlated 

with, and presented relative to, FFM (Maughan et al., 1983; Rosenberg, 1989; Narici 

et al., 1992; Narici and Maffulli, 2010; Stebbings et al., 2014). Given that the trend of 

absolute LBM is relatively consistent through the ages of 20-85 years in Caucasian 

controls (Imboden et al., 2017), it could be hypothesised that the trend of LBM would 

be consistent through the same ages in Caucasian individuals with Achondroplasia . 

It could also be assumed that absolute LBM would be lower in populations with 

Achondroplasia given their shorter limb lengths compared to controls. Indeed, this is 

reported in Owen et al. (1990) with their adult group with Achondroplasia displaying 

less absolute total-body and LBM mass compared to controls. However, ~84% of the 

TBM was made up of LBM in the individuals with Achondroplasia, ~14% higher than 

controls (Imboden et al., 2017). This suggests that individuals with Achondroplasia 

may have more FFM or BMC than controls as a ratio of TBM. However, the method 

of hydrostatic weighing does not pertain to individual measures of LBM or BMC. 

While the ratio FFM to TBM in individuals with Achondroplasia appears high 

compared to controls, it may be due in part to unexplained variance in the 

hydrostatic measure of LBM. Comparing the measured TBM (using scales) to the 

summation of LBM (kg) and fat mass (kg) from Owen’s group with Achondroplasia, a 

mean increase of 3 kg is observed in hydrostatic weighing, equivalent to 4.6% of their 
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TBM. Therefore, the accuracy of LBM in individuals with Achondroplasia presented 

by Owen et al. (1990) may not be externally valid for the entire population with 

Achondroplasia.  

 

For populations with Achondroplasia, any measure of FFM using DEXA would be 

more valid than hydrostatic weighing and therefore be more useful in scaling some 

functional measures, such as V̇O2max  or strength. For more specific measures of 

function however, relative values of total-body variables are not accurate for the 

site-specific measure. For example, strength measures of one muscle group may be 

under- or over-estimated when relative to TBM. Measures of muscle volume or 

cross-sectional area (CSA), are more appropriate parameters to present relative 

values of strength. 

 

Muscle volume and muscle CSA both correlate positively with MVC in controls 

(Maughan et al., 1983; Bruce et al., 1997) and help normalise strength deficits in 

smaller statured groups compared to taller groups, such as children and adults 

(Morse et al., 2008; O’Brien et al., 2010c; O’Brien et al., 2010d) and individuals with 

growth hormone deficiency (GHD) and controls (Sartorio and Narici, 1994; Sartorio 

et al., 1995; Bottinelli et al., 1997; Y. J. Janssen et al., 1999). Furthermore, single 

muscle measures, such as CSA, allow for a more accurate description of clinical states 

where reductions in lower limb skeletal muscle size contribute to physical 

impairments, such as sarcopenia (Narici and Maffulli, 2010). Single muscle measures 

of CSA can be achieved using magnetic resonance imaging (MRI), but can also be 

obtained using ultrasonography, with the two methods correlating well when 
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measuring both muscle volume and muscle CSA (Esformes et al., 2002; Reeves et al., 

2004c; Morse et al., 2007a). For groups with Achondroplasia, such measures would 

be useful given their rhizomelic limb lengths and likely muscle length differences 

compared to controls. To date however, there appears to be no such use of DEXA, 

MRI or ultrasonography to quantify FFM or muscle volume in individuals with 

Achondroplasia. Such measures would be useful to more accurately define clinical 

states or help normalise functional assessments in individuals with Achondroplasia. 

 

1.4 Functional measures 

For individuals with Achondroplasia, anthropometric measures are essential in 

describing the potential clinical implications of the condition. In conditions of short 

stature, such as Achondroplasia, measures of functional ability are much more 

relevant for understanding how the condition may impact daily life. In the broadest 

terms, one of the most frequently adopted clinical measures is 6-minute walk 

distance; the results of which are explained somewhat by variation of lower limbs 

strength in clinical groups (Headley et al., 2002; Camarri et al., 2006). For adults with 

Achondroplasia, the information obtained from the 6-minute walk test is likely 

compromised not just by strength but by leg length. Indeed, the shorter legs of 

individuals with Achondroplasia are likely to have relatively reduced muscle mass and 

in turn reduced force production, but leg length directly influences gait speed and is 

likely to reduce the distance covered by the individual in the 6-minute walk test (Holt 

et al., 1991; Hof, 1996; Vaughan and O’Malley, 2005). Therefore, either appropriate 

tests are required to more appropriately describe functional ability or used to scale 
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specific parameters of functional measures in individuals with Achondroplasia. The 

following sections will therefore identify functional measures commonly observed n 

control populations in three distinct sections: muscle strength; V̇O2 , and; gait 

kinematics.   

 

1.4.1 Neuromuscular impairments  

Muscle strength, defined here as the measurement of torque or force during a MVC 

(isometric, isotonic or isokinetic), represents one of the primary determinants of 

activities of daily living, walking performance and longevity (Seco et al., 2013; Silva 

et al., 2014). In many clinical populations, MVC force is reduced in the knee extensors 

(KE) (Sartorio et al., 1995; Bottinelli et al., 1997; Y. J. Janssen et al., 1999; Reeves et 

al., 2004b; Reeves et al., 2004a; Meldrum et al., 2007) and plantarflexors (Anker et 

al., 1997; Morse et al., 2005a; Hussain et al., 2014; Morse et al., 2015). This is 

consistent in the KE of children with Achondroplasia when compared to controls 

(Takken et al., 2007), but no data exists in any muscle group for adults with 

Achondroplasia.  

 

Invariably, individuals of shorter stature generate smaller MVCs than their taller 

counterparts, while mainly between juvenile and adolescent (Seger and 

Thorstensson, 2000), adolescent and adult (Morse et al., 2008) and juvenile and adult 

(Lambertz et al., 2003; Grosset et al., 2005; Grosset et al., 2008). However, when 

MVCs are normalised to TBM (De Ste Croix et al., 2003; Lambertz et al., 2003) and 

anatomical CSA (ACSA) of muscle (Kanehisa et al., 1994; Kanehisa et al., 1995; 
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Lambertz et al., 2003; Morse et al., 2008), these differences are lessened and at times 

statistically similar. While TBM and muscle size can account for some of the 

differences in the absolute MVC between cohorts, the determinants of force 

production include neurological, biomechanical and architectural properties 

(Maganaris et al., 2001). The following sections will therefore discuss the 

determinants of force production with emphasis on scaling force production 

between different statured populations. 

 

1.4.1.1 Determinants of force production 

1.4.1.1.1 Muscle size  

It is well documented in control populations that muscle size is a key determinant of 

force production, with larger muscles producing more absolute force (Maughan et 

al., 1983; Fukunaga et al., 1996; Bruce et al., 1997; Stebbings et al., 2014). In 

neuromuscular disorders or disease states, such as individuals with Cerebral Palsy 

(Hussain et al., 2014), disuse (Reeves et al., 2005), immobilisation (Grosset and 

Onambélé-Pearson  2008; Bostock et al., 2017b; Bostock et al., 2017a), ageing (Narici 

et al., 2003; Reeves et al., 2004a; Morse et al., 2005a), multiple sclerosis (Onambélé 

and Degens, 2006) and individuals with Muscle Dystrophy (Morse et al., 2015), the 

notion is concurrent. It is well established that the primary determinant of MVC force 

is physiological CSA (PCSA), defined as force per unit area of muscle perpendicular to 

the muscle fibres (force ÷ fascicle length). MVC torque on the other hand is 

determined primarily by muscle volume (torque ÷ muscle volume). One would 

therefore expect individuals with short stature, such as those with Achondroplasia, 
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to experience reduced force and torque production due to a smaller limb and 

therefore smaller PCSA and muscle volume, respectively. 

 

Muscle volume, ACSA and PCSA all emphasise a proportional down scaling of muscle 

size and strength to stature. For example, as an absolute measure, adults with GHD 

(i.e. proportionally smaller than controls but of the same maturity), have a ~20% 

lower KE MVC torque than controls (Sartorio and Narici, 1994; Sartorio et al., 1995; 

Bottinelli et al., 1997; Y. J. Janssen et al., 1999), while children’s KE MVC force 

(O’Brien et al., 2010c; O’Brien et al., 2010b) and ankle plantarflexor MVC force are 

54% and 42% less than adults, respectively (Morse et al., 2008). In individuals with 

GHD, the CSA of the quadriceps (Bottinelli et al., 1997) and quadriceps volume (Y. J. 

Janssen et al., 1999) have been used to scale KE MVC torque to allow better 

comparisons to controls (Table 1.2). In children, similar observations are made with 

PCSA accounting for discrepancies in absolute force production compared to adults 

(Morse et al., 2008; O’Brien et al., 2010c) (Table 1.2). For individuals with 

Achondroplasia, any proportional downscaling of torque or force may be skewed due 

to their disproportionate morphology compared to controls, a factor not reported by 

Takken et al. (2007) in their group of children with Achondroplasia.  

 

Based on the muscle size and force production of other shorter statured groups, it is 

likely that adults with Achondroplasia will produce less force from any appendicular 

muscle group than controls. Any discrepancies in MVC force production from 

individuals with Achondroplasia will be predominantly determined by muscle mass. 

However, factors affecting force production, such as neurological, architectural and 
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biomechanical properties, may compensate for the likely disproportionate muscle 

mass in individuals with Achondroplasia. These properties of force production are 

considered in the following sections. 

 

1.4.1.1.2 Neural function 

The ability to recruit skeletal muscle of prime movers, here described as activation, 

positively correlates with MVC torque production. During the same movement, 

antagonist muscles work to control the moving limb, such as the hamstrings during 

KE. The magnitude of antagonist recruitment, here described as coactivation, 

reduces the impact of the MVC torque production by the prime movers (Macaluso 

et al., 2002) and therefore is an important factor to consider when measuring MVC 

torque or force. A general trend of increased coactivation and decreased activation 

is observed in individuals that have a neurologic impairment, people that are less 

physically active and the elderly compared to controls; these differences in activation 

and coactivation profiles contribute almost entirely for the lower MVC torque 

compared to controls (Amiridis et al., 1996; Häkkinen et al., 1998; Morse et al., 

2005b; Hussain et al., 2014). In individuals with Achondroplasia, the level of agonist 

activation or coactivation during MVC is unreported but may highlight possible 

weaknesses of the population.  
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1.4.1.1.3 Agonist activation (activation) 

In healthy groups there is evidence that, depending on the muscle group, muscle 

activation is between 82-90% during MVC, increasing more so in physically active 

groups (Babault et al., 2001). Neither stature, nor muscle mass (Tomlinson et al., 

2014b), appear to influence activation in adults, with individuals with GHD having 

similar activation to controls (Sartorio and Narici, 1994; Johannsson et al., 1997). In 

individuals with neurological impairment however, such as those with Cerebral Palsy, 

almost all the strength deficit is accounted for by lack of activation compared to 

controls; this is observed in a group of physically active individuals though (Hussain 

et al., 2014). In able-bodied populations, physical activity appears to be a major 

contributor to activation (Amiridis et al., 1996). Coupling the fact that individuals 

with Achondroplasia are ambulatory and do not appear to have a neurological 

impairment, there is no reason for their agonist activation to be lower than controls. 

Therefore, any difference in MVC force between individuals with Achondroplasia and 

controls is expected to be accounted for by muscle size or coactivation. However, 

there are no data at present that quantify activation or coactivation levels of any 

muscle group in individuals with Achondroplasia. 

 

1.4.1.1.4 Antagonist activation (coactivation) 

Increased coactivation is usually observed in the presence of compromised muscle 

strength, joint pain or laxity in clinical groups such as individuals with Cerebral Palsy 

(Damiano et al., 2000; Elder et al., 2003; Barber et al., 2011; Barber et al., 2012), the 

elderly (Häkkinen et al., 1998; Macaluso et al., 2002; Reeves et al., 2004a; Morse et 
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al., 2005b; Morse et al., 2007b) and individuals that have suffered a stroke (Hsiao 

and Newham, 2001). Coactivation is important in stabilising joints during high torque 

movements but can also restrict movement of the joint. For example, increased 

coactivation of the hamstrings is associated with decreased gait speed (Schmitz et 

al., 2009; Peterson and Martin, 2010) and stair descent time (Larsen et al., 2008) in 

the elderly compared to younger populations. During KE, the anterior cruciate 

ligament (ACL) is a structure that aids in knee stability and is put under strain as the 

tibia is moved anteriorly. Increased coactivation of the hamstrings deters this 

anterior shift of the tibia allowing for a more stable joint and reduced risk of ACL 

injury during high KE torque movements (Fairbank et al., 1984). Recent data on the 

knees of individuals with Achondroplasia shows a reduced congruency and 

differences in structures compared to controls, such increased ACL-Blumensaat line 

and posterior cruciate ligament angles (Akyol et al., 2015). Therefore, the 

coactivation of the knee flexors in individuals with Achondroplasia during KE may be 

higher than controls to help protect the morphologically different knee joint from 

injury.  

 

The ability of individuals with Achondroplasia to activate their muscles is most likely 

similar to controls, but the difference between the groups’ knee structure may incur 

a higher coactivation of hamstrings during high torque KE movements in the 

individuals with Achondroplasia. This in turn would reduce net torque production of 

the KE group. Furthermore, a higher coactivation of muscles not only lowers net joint 

moments in clinical groups, but is also positively associated with a higher V̇O2 during 

walking (Peterson and Martin, 2010). Therefore, for individuals with Achondroplasia, 
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any measurement of force or torque production would most likely need to 

incorporate a description of coactivation profiles to ensure the agonist contribution 

is represented fully. 

 

1.4.1.1.5 Specific force 

Due to muscle force production being multifaceted, normalising force or torque to 

morphological features only, may be misleading (Maganaris et al., 2001). Recently, 

calculations have been employed to account for the morphological (muscle size), 

architectural (pennation and length of fascicles), neurological (activation and 

coactivation), and biomechanical properties (moment arm) of force production of 

muscles (Narici et al., 1992; Fukunaga et al., 1996; Maganaris et al., 2001; Morse et 

al., 2007b; Erskine et al., 2009; O’Brien et al., 2010c; Stebbings et al., 2014). 

Measured as force per unit area of muscle (N·cm-2), specific force normalises to the 

fascicle level and affords the comparison between pathological and healthy 

populations. In vivo measures of specific force in children (Morse et al., 2008; O’Brien 

et al., 2010c), individuals with Cerebral Palsy (Hussain et al., 2017), the elderly 

(Reeves et al., 2004a; Morse et al., 2005a) and healthy populations (Kawakami et al., 

1994; Kawakami et al., 1995; Fukunaga et al., 1996; Erskine et al., 2009; Erskine et 

al., 2011; Stebbings et al., 2014) show comparable results to one another (Table 1.2). 

In vitro measures of specific force in animal tissue (Geiger et al., 2000; Urbanchek et 

al., 2001; Greising et al., 2013) also show a range of values similar to human tissue 

(Table 1.2). To the author’s knowledge, no measure of specific force production has 

been made in any muscle group for individuals with Achondroplasia. Therefore it 
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remains unknown as to whether any difference in MVC force between individuals 

with Achondroplasia and controls can be accounted for by the composite elements 

used in the calculation of specific force, such as those observed in other shorter 

stature group comparisons (Sartorio and Narici, 1994; Sartorio et al., 1995; Bottinelli 

et al., 1997; Johannsson et al., 1997; Y. J. Janssen et al., 1999; Morse et al., 2008; 

O’Brien et al., 2010b; O’Brien et al., 2010c). Any differences in specific force between 

individuals with Achondroplasia and controls would highlight possible differences in 

biomechanical or physiological mechanisms between the groups, such as 

myofilament differences (Stebbings et al., 2014), or differences in tendon compliance 

(Reeves, 2006). 
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1.4.1.1.6 Tendon properties 

The ability to effectively transfer force to the bone relies on the compliance of its 

tendon. Here tendon compliance is defined as Young’s Modulus, which is calculated 

as the stress through the tendon (tendon force ÷ tendon CSA, given as N·cm-2) divided 

by the strain it experiences (change in tendon length ÷ resting tendon length, given 

as %). Where a stiffer tendon exists, the rate of force transfer to the bone is high and 

the converse is observed for a more compliant tendon (Maganaris and Paul, 2000a; 

Maganaris, 2002; Onambélé et al., 2006; Pearson and Onambélé  2006; Reeves, 

2006; Onambélé et al., 2007). Furthermore, the elastic properties of tendon have 

been linked to postural balance and joint stability (Onambélé et al., 2006; Onambélé 

et al., 2008).  

 

Joint laxity is clinically observed in infants with Achondroplasia (Bober et al., 2008) 

and is referred to on numerous occasions in collagen affected skeletal dysplasias and 

child populations with Achondroplasia (Sillence et al., 1979; Inan et al., 2006; Horton 

et al., 2007; Venkatesh et al., 2009; Krakow and Rimoin, 2010). However, implications 

of joint laxity in adults with Achondroplasia are rarely commented on. In elderly 

control populations, who have a reduced level of physical activity, both a lower force 

production and tendon compliance are observed (Reeves et al., 2003a; Morse et al., 

2005b; Reeves et al., 2005; Onambélé et al., 2006; Onambélé et al., 2008; K. E. 

Burgess et al., 2009b; Grosset et al., 2014). Male and female pre-pubertal children 

show a lower tendon compliance compared to sex matched adults (O’Brien et al., 

2010b). By accounting for the stress and strain of the tendon during contraction, an 

estimate of the mechanical properties can be described. Despite this, elderly and 
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child tendons are more compliant suggesting intrinsic differences to controls, such 

as fibril density.  

 

Hormonal differences are also associated with lower tendon compliance. For 

example where higher levels of oestrogen are associated with lower tendon 

compliance, such as between obese and lean groups and, between sexes (Kubo et 

al., 2003; Zazulak et al., 2006; B. F. Miller et al., 2007; Onambélé et al., 2007; Hansen 

et al., 2009; Burgess et al., 2010; Taş et al., 2017). In addition, it is known that visceral 

fat accumulation (as would occur in obesity) causes dysregulation of adipocyte 

functions. This in turn leads to a number of cardio-metabolic diseases including 

hypertension; hypertension itself is associated with elevated levels of relaxin 

(Papadopoulos et al., 2014). Studies link elevated relaxin levels with higher laxity of 

ligaments (Dehghan, 2014) and lower tendon compliance (Pearson et al., 2011). For 

individuals with Achondroplasia, the anecdotal evidence of joint laxity in infants 

(Bober et al., 2008), indications of obesity in population (Hecht et al., 1988; Horton 

et al., 1978a; Owen et al., 1990; Hoover-Fong et al., 2007) and probable lower 

physical activity (Longmuir and Bar-Or, 2000) would indicate a likely lower tendon 

compliance in the population.  

 

The aforementioned suggestions of tendon compliance in individuals with 

Achondroplasia are speculative as to date, there are no empirical observations of the 

tendon made in the population during rest or contraction. If these theories are 

accurate, their expected lower tendon compliance compared to controls is not only 

likely to affect force production at the joint, but also the mechanical energy storage 
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and transfer which in turn affects energy expenditure and V̇O2 during walking and 

running (Arampatzis et al., 2006; Fletcher et al., 2010). The following sections will 

therefore discuss the available literature surrounding cardiovascular research in 

shorter statured individuals. 

 

1.4.2 Cardiorespiratory impairments in shorter statured individuals 

Defined as the amount of oxygen utilised in the body, V̇O2 gives an estimate of the 

energy demands of individuals during steady state exercise (Jones and Carter, 2000). 

Subtraction of the resting metabolic rate (RMR) from the measured steady state V̇O2 

gives net V̇O2 for a given workload, referred to hereafter as ‘V̇O2’. Presenting V̇O2 per 

unit distance, rather than a rate, gives exercise C (Morgan et al., 1989; Saunders et 

al., 2004). While V̇O2  and C are a useful clinical measure to compare groups at 

submaximal exercise intensities, maximal V̇O2 (V̇O2max) is an accurate indicator of 

cardiovascular health and mortality (Kodama et al., 2009). In juvenile (Rowland et al., 

1987; Rowland and Green, 1988b; Rowland, 1993) and clinical groups, such as 

individuals with renal disease (Moore et al., 1993), a plateau in V̇O2 (which defines 

V̇O2max (Jones and Carter, 2000)) is rarely observed. This is due to participant fatigue 

rather than volitional exhaustion, as such the maximal V̇O2 value recorded for these 

populations is termed V̇O2peak. For adults with Achondroplasia though, there is no 

data that would suggest that V̇O2max could not be attained, particularly as children 

with Achondroplasia can attain V̇O2max (Takken et al., 2007).  
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With submaximal V̇O2 and V̇O2max correlating positively with TBM, V̇O2 and V̇O2max 

can, and has been, presented relative to TBM (and derivatives of TBM, such as FFM) 

in groups of different morphology (Goran et al., 2000; Weibel and Hoppeler, 2005; 

Tolfrey et al., 2006; Dencker et al., 2011; Lolli et al., 2017). Leg length on the other 

hand, influences V̇O2 more so than it does V̇O2max. The attainment of V̇O2max occurs 

at an intensity of exercise that is individualised based on physiological parameters, 

such as lactate threshold (Pereira and Freedson, 1997), running economy (Jones, 

2006) or maximal heart rate extrapolation from graded running (Grant et al., 1995). 

Submaximal V̇O2  and C however, are measured at set exercise intensities. For 

example, walking is a common modality and intensity of exercise to assess V̇O2, but 

leg length determines gait speed (Holt et al., 1991). Therefore, were shorter 

individuals to walk at the same set speed as taller individuals, a higher C would likely 

be observed due to a higher stride frequency (Minetti et al., 2000). Incorporating leg 

length when measuring V̇O2 or C is therefore important to allow comparative values 

between different statured groups. An example of a geometric scaler is Froude’s 

number (Fr), which is a dimensionless speed value that incorporates leg length and 

helps scale V̇O2  between intra- and inter-specie comparisons (Vaughan and 

O’Malley, 2005). Incorporation of such geometric (Fr) and morphological (TBM or 

FFM) parameters when measuring C values during walking and running helps 

rationalise any suggested physiological or biomechanical differences between the 

observed groups. 

 

For individuals with Achondroplasia, measurements of V̇O2max and C during walking 

and/or running would allude to cardiovascular health and energy demands of the 
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population, respectively. Using the conventional methods of presenting V̇O2 or C for 

groups with Achondroplasia however, may lead to erroneous comparisons to 

controls. This section of the review will therefore discuss the available literature 

surrounding the measurement of V̇O2 and V̇O2max in shorter statured individuals and 

comment on the appropriate morphological and geometric presentations of V̇O2max, 

V̇O2 and C for these groups. 

 

1.4.2.1 Maximal oxygen consumption 

Absolute and relative (i.e. presented relative to TBM or FFM) values of V̇O2max are 

lower in people of shorter stature, but these differences are somewhat lessened 

when relative to morphological measures. Conventionally, TBM is used to present 

V̇O2 and V̇O2max as it is a more convenient to measure than FFM. Relative values of  

V̇O2max using TBM appears to be a useful scaling parameter when utilised within 

groups of similarly proportioned individuals. There are instances though where 

differences in absolute V̇O2max  between groups of different arthrometry and 

geometry are not completely removed when relative to TBM. For example, the 

absolute measure of V̇O2max in African Pygmies is ~49% less than Caucasian controls; 

this difference is lessened to ~27% when V̇O2max is relative to TBM (Ferretti et al., 

1991). The use of FFM to scale V̇O2 or V̇O2max may therefore be argued as more valid 

than TBM due therefore being stronger relationships between FFM and V̇O2max than 

TBM and V̇O2max (Batterham et al., 1999). In addition, FFM contributes to ~90% of 

the measured V̇O2 during intense exercise (Tolfrey et al., 2006).  
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Both Dencker et al. (2011) and Goran et al. (2000) show that V̇O2max is ~28% lower in 

obese compared to lean populations, but < 8% lower when relative to FFM in the 

same populations. Tolfrey et al. (2006) showed that absolute V̇O2max in children was 

~50% lower than adults when presented relative to TBM, but was ~3% lower when 

presented to FFM (this particular study FFM was muscle volume). When FFM is used 

to present relative values of V̇O2max in individuals with GHD, differences to controls 

are also supressed (Cuneo et al., 1991; Whitehead et al., 1992; Nass et al., 1995). The 

lower absolute V̇O2max observed in these shorter statured groups compared to taller 

counterparts would suggest that adults with Achondroplasia would present a lower 

absolute V̇O2max than controls. This though, is yet to be measured empirically.  

 

Certainly, FFM appears to appropriately normalise V̇O2max in groups that differ in 

stature and morphology. Given the reduced stature and probable increased adiposity 

of individuals with Achondroplasia compared to controls, the use V̇O2max relative to 

TBM likely becomes moot. Based on the observations described in the previous 

section and in earlier sections on the morphology of individuals with Achondroplasia, 

FFM would be a more appropriate variable to present relative values of V̇O2max in 

individuals with Achondroplasia compared to control values. To date however, there 

appears to be no attempt to measure V̇O2max in adults with Achondroplasia, and 

therefore no attempt of scaling such measures. 
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1.4.2.2 Submaximal oxygen consumption and metabolic cost 

A positive curvilinear relationship exists for V̇O2 when presented against incremental 

walking and running speeds (Rowland and Green, 1988a; Minetti et al., 1994; 

Schepens et al., 2004; van den Hecke et al., 2007). Whereas, for the same graded 

intensity that exhibits a positive trend of V̇O2 described above, a U-shaped curve and 

a negative curvilinear trend in C exists for walking and running respectively (Ferretti 

et al., 1991; Minetti et al., 1994; McCann and Adams, 2002a). This relationship of V̇O2 

is similar in all statures, although proportionally smaller statured people appear to 

have a higher absolute V̇O2 at set ambulatory speeds (Ferretti et al., 1991; Minetti et 

al., 1994; Rogers et al., 1995; Minetti et al., 2000; DeJaeger et al., 2001; McCann and 

Adams, 2002b; Morgan et al., 2002; Schepens et al., 2004; P. A Kramer and Sarton-

Miller, 2008; Weyand et al., 2010). This is a consistent finding when observing C. For 

example, children have ~20% lower walking C relative to TBM compared to adults at 

matched speeds (McCann and Adams, 2002b). A similar observation is made in 

groups of children of differing ages with younger, and therefore shorter statured 

children appearing to have a higher C than older children at set walking intensities 

(Morgan et al., 2002). This is also apparent in adults with child onset GHD and adult 

African pygmies who have a higher C than controls and Caucasian controls, 

respectively, at matched walking speeds (Ferretti et al., 1991; Minetti et al., 1994; 

Minetti et al., 2002). These results are not surprising given that stride frequency at a 

set speed is dependent on leg length (Hof, 1996). Therefore, the leg length 

normalisers when presenting V̇O2 or C values is justified. 
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As mentioned in section 1.4.2, Fr provides a dimensionless speed value by 

incorporating leg length. Given as velocity2 (m·s-1) ÷ %leg length (m) · 9.81 (m·s-2), Fr 

values for humans are ~0.22 at self-selected walking speeds (Hof, 1996; Steudel-

Numbers and Tilkens, 2004; Vaughan and O’Malley, 2005; Steudel-Numbers and 

Weaver, 2006; Steudel-Numbers et al., 2007). The relationship between V̇O2 and Fr 

appears strong for comparisons of inter- and intra-species (Vaughan and O’Malley, 

2005). There is certainly a positive linear relationship between Fr and V̇O2 in children 

(DeJaeger et al., 2001), African pygmies (Ferretti et al., 1991; Minetti et al., 1994) and 

adults with child onset GHD (Minetti et al., 2002) during walking. These relationships 

match those of adult and control populations, respectively, suggesting the 

cardiovascular response of shorter statured groups is similar to taller controls at a 

similar dimensionless speed. Interestingly, the same respective U-shaped and 

negative curvilinear trends of walking and running C presented against speed is 

apparent when presented against Fr. However, where V̇O2 is similar between groups 

when incorporating Fr, C of shorter statured groups is higher than controls. This 

suggests biomechanical and physiological differences between groups of different 

stature (Ferretti et al., 1991; Minetti et al., 1994; Minetti et al., 2002; Schepens et al., 

2004; P. A Kramer and Sarton-Miller, 2008; Fletcher et al., 2010). The subtle 

differences in leg lengths between participants however, means that available V̇O2 

and C data presented against Fr in shorter statured groups have only been presented 

descriptively.  

 

For groups with Achondroplasia, the disproportionate lower limb length would likely 

lead to an overestimation of V̇O2 and C values compared to controls. The correct 
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scaling of V̇O2 is important when comparing C in individuals with Achondroplasia 

compared to controls. Differences in V̇O2max  and V̇O2  between differing statured 

groups when walking and running appear adequately scaled when using FFM and Fr, 

but they have not been implemented in groups that are both disproportionate in 

morphology and stature, such as individuals with Achondroplasia. Once scaled 

appropriately, any persistent differences in V̇O2  or C between individuals with 

Achondroplasia and controls would allude to differences in either cardiovascular 

mechanisms or biomechanical properties between the groups. Certainly, the 

measurement of the musculotendinous properties described above (section 1.4.1 

and its sub sections) may explain some of the potential difference in C between 

groups. A more likely explanation for the potential differences in C would be the 

movement of the groups’ body’s centre of mass (CoMB) during gait. The 

measurement and analysis of CoMB is often conducted by kinematic methods which 

is the final functional measure reviewed in this literature review. 

 

1.4.3 Gait and kinematics 

Kinematics involves the use of two- or three-dimensional motion analysis to predict 

the movement patterns of individual segments of whole bodies during activity 

(Cappozzo et al., 2005; Chiari et al., 2005; Della Croce et al., 2005; Leardini et al., 

2005). Although walking is one of the most commonly reported measures of physical 

impairment in clinical populations, timed walking tasks such as the 6-minute walk 

test do not determine what aspect of gait may be impaired. Kinematic analysis of 

walking can determine joint angles and joint velocities, allowing the inference of any 
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differences the individual may have when compared to age matched controls 

(Cappozzo et al., 2005; McGinley et al., 2009). Gait is predominantly a linear 

movement and combines coordination and synchronisation of the musculotendon 

units for an individual to ambulate effectively. While the muscle and tendon work in 

synchrony to propel the body, to some extent it is the dimensions of the skeleton 

that determine key gait events, for example the length of the leg determines stride 

length (Hof, 1996; Steudel-Numbers and Tilkens, 2004; Steudel-Numbers and 

Weaver, 2006). For otherwise healthy ambulatory individuals, gait at a self-selected 

walking speed (SSW) appears coordinated and efficient, whereas in groups where 

pathology exits, anecdotal and empirical kinematic differences are observed (Inan et 

al., 2006; Egginton et al., 2006; van der Meulen et al., 2008; Baker et al., 2009; Kark 

et al., 2012; Schweizer et al., 2014). Differences in gait kinematics of many 

pathological cohorts are explained by neurological impairment, muscle weakness, 

amputation or deformity (Baker et al., 2009; Kark et al., 2012; Schweizer et al., 2014), 

but little empirical data exist that extensively describe the gait of populations with 

Achondroplasia.  

 

There appear to be only four published documents describing gait kinematics of 

individuals with Achondroplasia, three of which are abstracts. Three studies are 

conducted in child cohorts, one with an age range between 3-17 years-old (Inan et 

al., 2006) another with a large age variance, mean 17-years-old SD 16-years, 

(Egginton et al., 2006) and the last being a case study of a 4-year-old pre- and post-

tibial osteotomy surgery (Rethlefsen and Tolo, 1998). The fourth study observed the 

gait in adults with Achondroplasia following limb lengthening surgery (van der 
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Meulen et al., 2008). Descriptively, the results of the four studies suggest individuals 

with Achondroplasia have a shorter stride length, increased pelvic rotation and 

anterior pelvic tilt throughout the stride compared to controls. Individuals with 

Achondroplasia also appear to have reduced hip extension and a varus position of 

the knee during the stance phase, and increased dorsiflexion during the entire stride 

compared to controls. However, there may be a disparity in comparisons to the 

adults with Achondroplasia who have not undergone leg lengthening surgery.  

 

There is a plethora of data surrounding short statured gait, but this is predominantly 

in children of different ages with and without pathologies (Cavagna et al., 1983; 

Alexander, 1984; Subramanian et al., 1998; DeJaeger et al., 2001; Bell et al., 2002; 

Rodda et al., 2004; Schepens et al., 2004; van den Hecke et al., 2007; Schwartz et al., 

2008). Therefore, any comparisons to populations with Achondroplasia are not 

comparable due to the leg geometry and joint morphology differences between 

groups with Achondroplasia and controls (Ponseti, 1970; Nehme et al., 1976; Akyol 

et al., 2015). Furthermore, the gait related data collected in the three available 

studies of individuals with Achondroplasia are not sufficient to systematically 

describe the gait of adults with Achondroplasia (Egginton et al., 2006; Inan et al., 

2006; van der Meulen et al., 2008), nor is there any mention of gait quality or 

indication of potential gait aetiology of populations with Achondroplasia from the 

available data. 

  

As described above, gait is predominantly a linear movement but encompasses 

multiple joints moving in all three planes. To understand gait aetiology of a 
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population, in depth analyses are needed. Differences in single or multiple joints are 

likely to affect the translation of the CoMB or be compensated by other joints or limbs 

during the same phase of gait. The following sections will discuss the use of kinematic 

data in relation to the calculation of ‘gait quality’, CoMB calculations and the 

relevance of accurate in vivo measures of body mass, discussed earlier in this review, 

to these calculations. 

 

1.4.3.1 Gait profiling  

With the large number of kinematic variables that are collected during gait, 

quantifying whether a person, or population, is different to another is difficult. 

Recently, methods have been developed to quantify gait kinematics over one stride 

by encompassing numerous kinematic parameters (Schwartz et al., 2008; Baker et 

al., 2009). The Gait Profile Score (GPS, Baker et al. (2009)) and the Gait Deviation 

Index (GDI, Schwartz et al. (2008)) are calculated from 15 kinematic variables and 

produce a single value which provides a global measure of gait quality. Both the GPS 

and GDI are derived from the root mean square difference of gait kinematics from a 

sample population. The two methods therefore present a very strong correlation 

with one another (r = 0.995, (Baker et al., 2009).  

 

The GPS also shows good correlations with clinical assessments (R2 = 0.96 against 

Gillette functional assessment questionnaire and R2 = 0.99 against gross motor 

function classification system, Baker et al., (2012)) and high face validity against 

clinician ratings (Spearman’s r = 0.84, (Beynon et al., 2010)). Furthermore, GPS is the 
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sum of the movement analysis profile (MAP) which provides gait variance scores 

(GVSs) for each of the 15 kinematic variables that make up GPS, GDI only presents 

one value. Each GVS allows for inter- and intra-joint and plane comparisons which is 

useful to determine which are the predominant joints affecting gait quality and 

therefore aid in gait rehabilitation or gait improvement interventions. Lastly, GPS and 

MAP is derived from angular measurements, giving units of degrees (°). Therefore, 

GPS can be presented as absolute or relative differences between groups and allows 

more powerful statistical analyses to be conducted than GDI.  

 

The GPS has been used in adults and children with Cerebral Palsy (Baker et al., 2009; 

Beynon et al., 2010; Baker et al., 2012), individuals with Down’s Syndrome (Galli et 

al., 2015), patients with varying pathologies, including joint laxity (Schweizer et al., 

2014), a modified version in lower limb amputees (Kark et al., 2012) and arm 

spasticity in individuals who have suffered a stroke (Johansson et al., 2014). The GPS 

consistently shows that people with pathologies have a different gait compared to 

age matched controls with individuals GVSs helping to highlight which of the 15 

kinematic variables is most different (Table 1.3). Based on previous reports of gait in 

individuals with Achondroplasia, and with subtle differences in joint morphology 

between individuals with Achondroplasia, it is likely that their gait is different to 

controls. Notably, any measure of ‘gait quality’ cannot be made without first 

measuring the kinematic profile of the cohort in question. To date, gait kinematics 

have not been measured in a group of adults with Achondroplasia without limb 

lengthening and so no data exists that suggests how much their gait differs to 

controls, if indeed it is different at all.  
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Table 1.3: Comparisons of gait profile scores made in clinical populations 
available in the literature. Data given as median (IQR). 

Reference Clinical 
Description 

Age (SD) 
yrs  

N GPS score (°) 
median (IQR) 

Baker et al. (2009) 271 = CP 12 (3) 407 9.7 (4.9) 
  88 = GOC       
  48 = NC       
  TD Children 11 (3)  38 5.2 (1.9) 

Beynon et al. (2010) 37 = CP Range 4-
18 

60 Summed GPS for  
all groups: 

 
15.5 (5.4) † 

  11 = GOC     
  10 = NC     
  2 = Other     

Baker et al. (2012) 271 = CP 12 (3) 407 FAQ 6, 14.3 (4.7) 
  88 = GOC     FAQ 7, 11.4 (4.8) 
  48 = NC     FAQ 8, 10.9 (4.6) 
        FAQ 9, 9.0 (3.5) 
        FAQ 10, 7.6 (3.3) 
  TD Children 11 (3) 38 5.3 (1.4) 

Kark et al. (2012) TT Prosthetic 62 (13) 11 6.7 (2.3) 
  TF Prosthetic 63 (12) 8 10.6 (1.8) 
  TT Intact   11 6.5 (2.0) 
  TF Intact   8 8.8 (4.0) 
  Able-bodied 61 (8) 28 NR 

Schweizer et al. 
(2013) 

Obi 16 (9) 176   

  NflaUni 22 (16) 12   
  NflaBi 19 (13) 83   
  NspUni 17 (10) 176   
  NspBi 16 (8) 119   
  NSpBiNTC 19 (10) 57   
  Healthy 

individuals 
25 (12) 102   

Gali et al. (2015) Down 
Syndrome 

25 (5) 24 11.2 (5.4) 

  Healthy 
individuals 

27 (9) 15 4.2 (1.6) 

TD, typically developed; FAQ, groups categorised based on functional 
assessment questionnaire (low FAQ = more impaired), CP, Cerebral Palsy; GOC, 
general orthopaedic conditions; NC, neurological conditions; NR, not reported; 
† data presented graphically and estimated using Image J (National Institute for 
health, version 1.50i) for this table; OBi, spinal disorders; NflaBi, poliomyelitis; 
NflaBi, spina bifida and ligamentous laxity; NspUni, hemiparesis of various 
aetiologies; NspBi, bilateral diplegia with trunk control; NspBiNTC, neurological 
spasticity without trunk control; TT, transtibial amputee; TF, transfemoral 
amputee. 
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1.4.3.2 Centre of mass movement 

While joint angles can help describe contraction patterns during gait, joint positions 

allow for the calculation of mass centre positions of individual segments (CoMS) 

which in turn can estimate the CoMB position and translation patterns (Aleshinsky, 

1986b; Aleshinsky, 1986a). The changing of joint angles in healthy individuals, alters 

the translations of the CoMB (Ortega and Farley, 2005). These findings are also 

observed in clinical populations, for example individuals with Cerebral Palsy have a 

greater vertical (van den Hecke et al., 2007; Zollinger et al., 2016) and medio-lateral 

(Zollinger et al., 2016) CoMB translation compared to controls. Greater medio-lateral 

translation of the CoMB is also observed in the obese and lower limb amputee groups 

compared to normal weight and abled-bodied groups (Browning et al., 2009; 

Weinert-Aplin et al., 2017). As observed in clinical groups mentioned here, there is a 

positive association between increased mechanical work (i.e. movement of the 

CoMB) and C (DeJaeger et al., 2001; Mian et al., 2006; Teunissen et al., 2007; Grenier 

et al., 2012). This association is likely due to the changes in CoMB translation 

compared to controls which is likely a result of changes in joint kinematics.  

 

Ultimately the leg length determines the majority of vertical translation of the CoMB, 

which translates as an inverted pendulum like motion (Cavagna et al., 1976; Cavagna 

and Kaneko, 1977; Cavagna et al., 1977). With leg length being shorter in individuals 

with Achondroplasia compared to controls (Nehme et al., 1976), the absolute height 

of the CoMB would be lower in individuals with Achondroplasia compared to 

controls. In addition, it is likely that the pattern of vertical CoMB movement would 

be similar to controls (i.e. local minima and maxima). However, based on the medio-
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lateral movements of the CoMB observed in obese individuals (Browning et al., 2006), 

the greater adiposity measured in groups with Achondroplasia would suggest a 

greater medio-lateral movement compared to controls (Hecht et al., 1988; Owen et 

al., 1990; Hoover-Fong et al., 2007). However, both vertical and medio-lateral 

movements of the CoMB are unreported in any group of individuals with 

Achondroplasia. To determine the position of CoMB, not only are the coordinates of 

key joint centres needed, but also segmental masses are required. The following 

section will address methods of attaining BSPs and their application to populations 

with Achondroplasia. 

  

1.4.3.3 Body segment parameters (BSPs) 

Descriptions of BSPs have been made in males and females (Durkin and Dowling, 

2003; Chambers et al., 2010), elderly (Dempster, 1955; Clauser et al., 1969), different 

morphologies (Damavandi et al., 2009), during pregnancy  (R. K. Jensen et al., 1996), 

children (R.   K. Jensen, 1986; R. K. Jensen, 1989) and different ethnic groups (Cheng 

et al., 2000). BSPs have been determined using anthropometric (Hanavan Jr, 1964; 

Zatsiorsky and Seluyanov, 1985; De Leva, 1996), cadaveric (Dempster, 1955; Clauser 

et al., 1969), radiation (Zatsiorsky, 1983; Levine et al., 2000; Durkin et al., 2002) force 

plate (Pataky et al., 2003; Damavandi et al., 2009) and kinematic techniques (Hatze, 

1980), but none have been reported for individuals with Achondroplasia. As 

discussed in section 1.2, and its subsections, the morphology and geometry of 

individuals with Achondroplasia is different to controls. A likely misinterpretation of 

the CoMB prediction of individuals with Achondroplasia would be made using the 
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conventional methods of inertial properties of segments, such as Dempster’s (1955) 

adult data or Jenson’s (1986; 1989) juvenile data. For individuals with 

Achondroplasia, in vivo measures of BSPs (as described in section 1.3) would be 

appropriate and useful to help estimate the CoMB. 

 

1.5 Aims/Objectives 

Functional physiological and biomechanical measures have been discussed in depth 

for many cohorts, but very little data has been provided in the populations with 

Achondroplasia, with even less being observed in adults with Achondroplasia. 

Therefore, the overriding aim for this thesis is to present physiological and 

biomechanical data related to functional tasks in an adult population with 

Achondroplasia. More specifically, the objectives of the current thesis were 

therefore to: 

1) Report limb lengths and body composition of adults with Achondroplasia and 

compare to controls; 

2) Measure the maximal aerobic capacity (V̇O2max) of adults with Achondroplasia 

and compare to controls; 

3) Measure the submaximal oxygen consumption (V̇O2) and metabolic cost (C) 

of adults with Achondroplasia adults during habitual (SSW) and standardised 

gait speeds and compare to controls; 

4) Describe architectural properties of the muscle-tendon complex during 

maximal voluntary contraction in adults with Achondroplasia and compare to 

controls; 
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5) Provide a lower limb and CoMB kinematic analysis of gait at habitual (SSW) 

and standardised speeds in adults with Achondroplasia and compare to 

controls. 

 

1.5.1 Overview and hypotheses of proceeding chapters 

Chapter 2 will describe the in vivo morphological and limb length of 15 body 

segments in a group of adults with Achondroplasia by using absorptiometry and 

three-dimensional motion analysis. It is hypothesised that: 

1) The adults with Achondroplasia will have shorter legs and arms than age 

matched controls, while head, torso and pelvis will be similar in length 

between groups; 

2) The distribution of muscle and fat mass will differ between groups and 

segments; 

3) The adults with Achondroplasia will exhibit less bone mass (BMC) and lower 

BMD than controls; 

4) No differences in BMD will be observed when scaling BMC to volumetric 

measures. 

 

Chapter 3 will present the V̇O2max  of adults with Achondroplasia and controls. 

Presentation of absolute V̇O2max will be made relative to TBM and FFM obtained from 

Chapter 2. The hypotheses are that: 

1) The adults with Achondroplasia will have a lower absolute V̇O2max compared 

to controls;  
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2) The difference in V̇O2max  between groups will decline when V̇O2max  is 

presented relative to TBM and FFM. 

 

Chapter 4 will present the V̇O2 profile of adults with Achondroplasia during habitual 

gait speed (SSW) and 12 standardised speeds that range from slow walking to fast 

running on a treadmill. V̇O2 will be presented and converted to C values. For both 

parameters, morphological (TBM and FFM) and non-dimensional normalisers (i.e. Fr) 

will be used to normalise data. It is hypothesised that: 

1) The adults with Achondroplasia will have the same absolute V̇O2 values at 

each absolute speed and a lower absolute V̇O2 at SSW compared to controls; 

2) When relative to TBM and FFM, the adults with Achondroplasia will have a 

higher V̇O2 at every gait speed compared to controls; 

3) Walking and running C will be higher in the adults with Achondroplasia at 

every gait speed compared to controls; 

4) The inclusion of Fr into both V̇O2 and C values will help scale the absolute 

differences between groups. 

 

Chapter 5 will measure the in vivo properties of the vastus lateralis during maximal 

voluntary contraction using an isokinetic dynamometer in adults with 

Achondroplasia and controls. Specifically, the size, activation profile and 

architectural properties of the muscle will be measured using ultrasonography. The 

moment arm of the knee will be obtained using DEXA and be incorporated into the 

calculation of specific force to account for any differences between groups. It is 

hypothesised that: 



 53 

1) The adults with Achondroplasia will have a lower knee extensor torque and 

force compared to controls; 

2) Both knee extensor torque and force will be normalised between groups 

when incorporating morphological measures of the vastus lateralis; 

3) There will be no difference in specific force between groups. 

 

Chapter 6 will encompass data from Chapter 6 to determine the compliance and 

structure of the patella tendon during maximal voluntary contraction in adults with 

Achondroplasia and controls. It is hypothesised that: 

1) The adults with Achondroplasia will have a shorter and thinner patella tendon 

than controls; 

2) Stiffness and Young’s Modulus will be lower in the patella tendon of the 

adults with Achondroplasia compared to controls. 

 

Chapter 7 will comprise of a three-dimensional kinematic analysis of the same 

walking and running speeds set in Chapter 4 in adults with Achondroplasia and 

controls. Data from Chapter 2 will be used to predict the position of the CoMB during 

a complete stride. Lastly, the kinematic data will be used to provide a clinical analysis 

of gait using the global gait score, GPS. It is hypothesised that: 

1) Discrete gait kinematics will be different between groups; 

2) The adults with Achondroplasia will have a greater GPS score than controls 

for all speeds; 

3) The adults with Achondroplasia will have greater relative CoMB movement in 

the vertical and medio-lateral planes compared to controls. 
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Finally, Chapter 8 will retrospectively view the results of the preceding Chapters. This 

chapter will draw together the preceding Chapters’ findings in an attempt to explain 

any persistent differences from the preceding Chapters that are not explained by 

relative presentations of functional data. Lastly, this Chapter will discuss the clinical 

implications of the collected data from all Chapters and consider prospects for future 

research within populations with Achondroplasia.



 53 

 

 

 

 

 

 

 

 

Chapter 2: In vivo anthropometric measures of 

adults with Achondroplasia 
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2.1 Abstract 

Current data suggest that the bone mineral content (BMC) and bone mineral density 

(BMD) of individuals with Achondroplasia are below age matched individuals of 

average stature (controls). However, due to the disproportionate limb-to-torso 

length of individuals with Achondroplasia compared to age matched average stature 

individuals (controls), the likely statistically lower BMC and BMD may be removed 

when presented appropriately. There also appears to be a lack of total-body and 

relative (i.e. ratios of total-body mass) body composition data available for 

populations with Achondroplasia. The aim of this study was to measure and compare 

total-body and segmental body composition in adults with Achondroplasia (N = 10, 

22 ±3 yrs) and controls (N = 17, 22 ±2 yrs). Dual energy X-ray absorptiometry (DEXA) 

and three-dimensional modelling was used to respectively measure the in vivo 

masses (BMD, BMC, fat free mass (FFM) and body fat mass) and lengths of the total-

body and 15 segments. All variables were presented as an absolute value and then 

each segment was presented relative to the total-body and total-limb values, 

respectively. BMC of lumbar vertebrae (L1-4) was also measured and presented as a 

volumetric BMD (BMDVOL). As an absolute measure, adults with Achondroplasia had 

shorter limbs, but the same length torso as controls. Absolute measured of BMC, 

BMD and FFM were lower in the adults with Achondroplasia compared to controls, 

whereas body fat mass was higher. There was no difference in group’s limb lengths 

when presented to the total-limb length, but the adults with Achondroplasia had a 

longer foot. When presented relative to total-body and respective total-limb values, 

BMD was the same between groups but the adults with Achondroplasia had lower 
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relative BMC values. There was no difference in lumbar BMDVOL between groups. The 

adults with Achondroplasia have disproportionate limb lengths relative to the torso 

compared to controls, but the dimensions of the limbs are the same between groups 

when relative to the total-limb. The adults with Achondroplasia could be classed as 

‘osteopenic’, which would not be apparent when appropriately presented. Further 

work is needed to create a reliable and referable database for the body composition 

of populations with Achondroplasia to be compared. 

 

Key words: Achondroplasia; Body Composition; Bone Mineral Content; Bone Mineral 

Density; Volumetric Bone Mineral Density 
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2.2 Introduction 

Achondroplasia is the most common genetic form of dwarfism and is classically 

characterised by disproportionate limb-to-torso length and shorter stature (< 1.47 

m) compared to controls. Achondroplasia is brought about by a fibroblast mutation 

resulting in impaired linear long-bone growth (Nehme et al., 1976; Horton et al., 

1978b; Horton, 2006; Horton et al., 2007; Baujat et al., 2008; Krakow and Rimoin, 

2010). Despite the well-established description of the condition, physiological and 

biomechanical measurements are poorly represented in the literature. For example, 

the ‘disproportionate’ nature of the condition has received little attention beyond 

case reports with little quantitative confirmation of limb length or body composition 

(here defined as bone mineral content (BMC), bone mineral density (BMD), fat mass 

and fat free mass (FFM)) given other than in heterogeneous groups with 

Achondroplasia.  

 

The ‘rhizomelic’ limb length (i.e. longer distal segments compared to the adjoining 

proximal segment) is a common term used to describe the limb lengths of individuals 

with Achondroplasia (Haga, 2004; Horton et al., 2007; Baujat et al., 2008; Bober et 

al., 2008; Krakow and Rimoin, 2010; Arita et al., 2013; Matsushita et al., 2016), but 

there are no robust statistical analyses to confirm this. Furthermore, limb segments 

have not been presented relative to the limb to quantify their possible proportional 

shortening. Attempts have been made to describe BMC, BMD, FFM and fat mass in 

children with Achondroplasia during maturation (Hecht et al., 1988), male and 

female populations with Achondroplasia of differing ages (Owen et al., 1990; Arita et 

al., 2013; Matsushita et al., 2016) and case reports (Taşoğlu et al., 2014). However, 
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the participant inclusion criteria and in vivo body mass evaluation methods used in 

these studies are not robust enough to allow appropriate comparisons to commonly 

used reference data (hereafter referred to as ‘controls’) or within differing 

populations of Achondroplasia (i.e. age and sex). 

 

Considering Achondroplasia is a genetic condition that influences the development 

of the long-bones, an accurate description of BMC and BMD is essential, but is 

underreported. Clinically, BMC and BMD are used to describe bone density, quality 

and strength and, define osteoporosis; a systemic skeletal disease which is 

characterised by reduced bone tissue (Kanis et al., 1994; Tabensky et al., 1996). There 

are empirical data from cohorts with Achondroplasia that suggest BMC and BMD in 

the femur (Su et al., 2010; Taşoğlu et al., 2014), spine (Arita et al., 2013) and mandible 

(Arita et al., 2013; Matsushita et al., 2016) are lower than controls when presented 

as Z-scores. Therefore, individuals with Achondroplasia could be at a greater risk of 

bone fractures. Bone health (here as BMD) is assessed using either Z or T scores but 

using such methods to assess bone health is difficult in populations with 

Achondroplasia. There is likely a disproportionate total-body BMC and BMD of 

individuals with Achondroplasia compared to controls, manifested by 

disproportional limb-to-torso between groups. Therefore, the commonly used Z and 

T scores would likely under estimate the bone health of individuals with 

Achondroplasia were they utilised.  

 

Studies observing BMC and BMD in groups with Achondroplasia have predominantly 

used DEXA as the mode of data collection (Arita et al., 2013; Taşoğlu et al., 2014; 
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Matsushita et al., 2016). All BMD measurements using DEXA are given as a ratio to 

area view. Individuals with Achondroplasia have irregular shaped long bones 

compared to controls (Ponseti, 1970; Nehme et al., 1976) which may alter the 

interpretation of bone density, and therefore definition of bone health, when 

compared to controls. Furthermore, individuals with Achondroplasia are likely to 

have less bone mass (BMC) and a smaller area view of the bone, due to their shorter 

bones. Therefore, the calculation of total-body BMD in individuals with 

Achondroplasia is likely to be inaccurate when compared to controls. The calculation 

of volumetric BMD (BMDVOL) may be more appropriate to compare the BMD of 

individuals with Achondroplasia controls as this method considers a greater amount 

of the observed bone. For example, in groups of shorter stature, BMD was lower but 

BMDVOL were similar to control groups (Lu et al., 1996; García-Hoyos et al., 2017). It 

would therefore be useful to describe the BMDVOL, such as the lumbar vertebra, in 

individuals with Achondroplasia to give a more accurate representation of BMD and 

quality compared to controls. 

 

Furthermore, it would be expected that individuals with Achondroplasia would have 

less appendicular and total-body FFM than controls due to their shorter limbs. 

Conversely though, it appears individuals with Achondroplasia have a higher amount 

of body fat percentage than controls when assessed with skinfold callipers (Hecht et 

al., 1988; Owen et al., 1990) and water densitometry (Owen et al., 1990). Regional 

measures of body fat and FFM in individuals with Achondroplasia would be more 

useful to the clinician however as regional fat mass of the abdomen is highly 

correlated with metabolic syndrome and decreased life expectancy (Després et al., 
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1990; Després et al., 2006; Freedman et al., 2013). There appears to be, however, no 

conclusive total-body or segmental body composition measures made in any 

population with Achondroplasia.  

 

The aims of the current study therefore were to measure segment lengths and to 

collect in vivo total-body and segmental parameters of individuals with 

Achondroplasia. 

The objectives of this study were to: 

1) measure 15 individual segment lengths using 3-dimensional movement 

analysis techniques in adults with Achondroplasia and compare to age 

matched controls; 

2) assess the in vivo BMC, BMD, body fat mass and FFM distributions of the 

total-body and 15 segments using DEXA in adults with Achondroplasia and 

compare to age matched controls; 

3) present segment lengths, BMC, BMD, FFM and body fat to appropriate 

anatomical measures between groups; 

4) use the total-body and relative data to outline any health markers that may 

exist in adults with Achondroplasia. 
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2.3 Method 

After written informed consent, 10 adult males medically confirmed as exhibiting 

Achondroplasia and 17 age and sex matched controls agreed to partake in this study 

(anthropometric descriptions of each group are given in Table 2.1).  

 

 

  

Table 2.1: Anthropometric data for the groups of males with Achondroplasia 

and controls, values displayed as mean (SD). 

  Achondroplasia (N = 10)   Control (N = 17) 

Stature (m) † 1.38 (0.05) *  1.79 (0.08) 

Age (yrs) 22 (3)   22 (2) 

Total-body mass (kg) 61.9 (8.7) * 76.5 (10.6) 

Body Mass Index (kg·m-2) 32.4 (3) * 24.1 (4.5) 

BMC (kg) 2.1 (0.3) * 3.1 (0.5) 

BMD (g·cm-2) 1.17 (0.10) * 1.37 (0.11) 

FFM (kg) 41.3 (5.3) * 55.6 (7.6) 

Body Fat (kg) 18.3 (3.9)  16.8 (5.0) 

Body Fat (%) 29.3 (2.9) * 22.4 (5.3) 

BMCLUM (g) 62.5 (13.8) * 90.4 (15.3) 

BMDVOL (g·cm-3) † 0.290 (0.051)  0.279 (0.044) 

BMC, Bone Mineral Content; BMD, Bone Mineral Density; FFM, Fat Free 
Mass; BMCLUM, Bone Mineral Content of the Lumbar Vertebrae (L1-4); † Mann 
Whitney-U t-test. * P ≤ 0.001. 
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The inclusion criteria for all participants were males between the ages of 18-35-

years-old, were self-reported as physically active (> 2 hours of structured exercise 

per week) and were free from injury or aliments that would hinder exercise 

performance. For the group with Achondroplasia, inclusion criteria also required 

them to be non-leg lengthened. Based on these criteria, the group with 

Achondroplasia consisted of ~13% of the registered U.K. population (Burton, 2018). 

From the literature search conducted for Chapter 1 this group of adult males with 

Achondroplasia represents the most homogenous skeletal dysplasic group available 

in the literature (i.e. accounting for age, sex, condition, pre-leg lengthened and 

activity levels).  

 

Ethical approval for this thesis was attained from the local committee (Manchester 

Metropolitan University, see Appendix 1) and conformed to the latest revision of the 

Declaration of Helsinki. Each participant attended one testing session at the 

laboratories of Manchester Metropolitan University where total-body 

anthropometric measurements were carried out. 

 

2.3.1 Stature and mass 

The stretch stature method was used to measure stature of all participants (Tanner, 

1962) using a fixed stadiometer with a tolerance ±1 mm (Stadiometer, Harpenden 

with Veeder-Root high speed counter, Holtain Ltd, Crymych, Wales). Participants 

were the weighed using electronic scales (SECA 813, CA 91710 Chino, USA) while 

wearing minimal, light clothing and were barefooted. 
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2.3.2 Body composition 

After fasting for ~8 hrs, a DEXA scanner (Hologic Discovery, Vertec Scientific Ltd, UK) 

was used to measure total-body mass (kg), BMC (kg), BMD (g·cm-2), FFM (kg) and 

body fat (kg) of the total-body. Participants wore a loose-fitting cotton gown and lay 

supine in a predefined, anatomical position that ensured enough space was between 

each arm and the torso, and between each leg. The feet were positioned in an 

internally rotated position. To maintain participant comfort, and reduce muscle 

activity during the scan, medical tape (TransporeTM Medical Tape, 3MTM, USA) was 

wrapped around both feet to keep them in the required position through the 

scanning protocol (Figure 2.1). A default total-body scan (EF 8.4 lSv) was selected for 

all trials; scans emitted dual energy (140/100 kVp) fan-beam x-rays and lasted for ~7 

minutes. The scanning region was 195 cm x 65 cm with 1.3 cm line spacing and a 0.2 

cm point resolution. Each participant was exposed to ~8.4 µSv (Blake et al., 2006). 

Glickman et al. (2004) showed that DEXA gives a reliable measurement of total-body 

mass (r = 0.940), fat (r = 0.970) and lean mass (r = 0.890) against computer 

tomography in controls. Similar correlations are observed in obese comparisons to 

computer tomography with measures of trunk fat mass (r = 0.940), leg fat mass (r = 

0.940) and leg FFM (r = 0.760) all being reliable (Bredella et al., 2010). In addition, 

the interrater reliability of DEXA scanning has been shown to be in excess of 0.998 

(Hart et al., 2015). 
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2.3.3 Segmental definitions  

Following DEXA scanning, each scan was split into 15 segments (Figure 2.2) using 

descriptions by Dempster (1955). Central segments were defined as: Head and Neck 

(HaN); thorax and; pelvis. The appendicular skeleton was segmented into and 

defined as: upper arm (UA); forearm (FA); hand; thigh; shank, and; foot. In addition, 

a secondary segmentation was conducted with the HaN, thorax and pelvis combined 

(HTP) and the left and right limbs being summed such that total-arm was the sum of 

UA, FA and hand, while the total-leg was the sum of thigh, shank and foot. Analysis 

of groups’ body composition of the total-body was conducted post scan with 

segmental analyses conducted based on previous methods (Durkin et al., 2002; 

Durkin and Dowling, 2003). Digitisation of scans was completed using Physician’s 

View v6.1 software (Hologic, UK) with segments separated using a series of squares, 

rhomboids and pentagons along the transverse axis of each respective joint (Figure 

2.2). 
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Figure 2.1: An example of the participant set up for a total-body DEXA scan. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: DEXA scans for (left) control and (right) an individual with Achondroplasia 

after segmental analyse. Note: the thorax of Achondroplasia was divided into two 

segments and then summed after analysis to ensure the correct mass was 

encompassed in the region. 
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2.3.4 Volumetric analysis of BMD 

Post DEXA scan analysis was also used to segment the lumbar region of the spine 

(superior transverse plane of L1 to inferior transverse plane of L4, defined as L1-L4) 

using digitising software (Image J, National Institute of Health, Version 1.03i) to 

estimate the BMC of L1-L4 (BMCLUM). Two of the 10 participants with Achondroplasia 

vertebral column were not identifiable post scan and so were omitted from this 

analysis. The lumbar vertebral column (L1-4) was assumed cylindrical and reliable 

methods (R = 0.979-0.992) previously described (Kröger et al., 1992; Sabin et al., 

1995; Ott et al., 1997) were then used to measure the width of the lumbar vertebral 

column and its BMC. BMDVOL was then calculated as: 

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2.1:	𝐿𝑢𝑚567 	= 	𝜋	 ∙ 	 𝑟< 	 ∙ 	𝐻 

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2.2:	𝐵𝑀𝐷567 	= 	𝐵𝑀𝐶7BC𝐿𝑢𝑚567  

 

Where LumVOL is the volume of the lumbar (L1-L4) vertebrae, π is 3.14, r is the radius 

of the lumbar (i.e. half the width measured by ImageJ), H is lumbar column’s height 

measured by ImageJ, BMCLUM is the bone mineral content of the lumbar region 

measured by DEXA and BMDVOL is the volumetric bone mineral density of the lumbar 

column (Figure 2.3). 
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Figure 2.3: Volumetric calculations of BMD using DEXA data, adapted from Kröger et 

al. Where r is radius, H is the height of the lumbar column, L1-4 is each of the 

respective lumbar vertebrae. 

 

2.3.5 Segment lengths 

Following DEXA scans, participants underwent segmental length analysis in a 

separate air-conditioned motion analysis laboratory. 3-Dimensional motion analysis 

hardware (VICON, Oxford Metrics, UK) was used to determine the length of limbs 

and segments. Participants wore only shorts or tight-fitting clothing after 

anthropometric measures described by the User Manual were taken and entered 

into the software (Bodybuilder, ‘plug-in-gait model’, VICON Motion Systems, 

Oxford). Fourteen cameras were positioned on scaffolding which gave a ~170 m3 

viewing area. Calibration was completed following the manufacturers guidelines, 

such that the residual was < 0.01 mm. The model used to determine limb length was 
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Plug-in-Gait, which used thirty-nine 5 mm diameter reflective markers to determine 

limb lengths from joints centre predictions (see Figure A2.1 and Table A2.1 in 

Appendix 2 for marker placement details). Hip joint centres were calculated using 

previous equations (Davis et al., 1991) while all other joint centres were predicted 

based on the anthropometric measure described in the User Manual. 

 

2.3.6 Statistical analysis 

All data were collated on a personal computer (Macintosh, California) and 

inferentially analysed using SPSS (v22.0, IBM). The scan of each participant was 

analysed twice, over the period of one week, to assess the reliability of total-body 

mass and segment mass. To determine the intra-rater reliability a Bland-Altman 

limits of agreement plot and coefficient of variation was conducted to ascertain the 

agreement of the segmental analysis (Bland and Altman, 1986). Paired sampled t-

tests were used for Day-1 (D1) and Day-2 (D2) segmental comparisons; intra-class 

correlation coefficient (ICC) was used to assess the intra-rater reliability of total-body 

mass and segment mass for the group with Achondroplasia and controls, as total-

segment mass was deemed adequate to validate other coefficients given by DEXA 

(Glickman et al., 2004). All segment lengths and body composition variables data 

were initially compared between groups as a total-body measure. Following, each 

individual segment was presented relative to total-body values (%) and relative to its 

respective limb (%) as described in the segmental definitions section of the method. 

A multivariate analysis of variance (MANOVA) was used to establish differences 

between left and right sides and between groups. Independent t-tests were carried 
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out on total-body, central segments and lumbar BMDVOL values between groups. For 

variables that violated parametric assumptions, Mann-Whitney U tests were 

performed to assess between-group differences of the central segments, while data 

that violated Levene’s test were corrected using the non-equal variance option in 

SPSS (Greenhouse Geisser). Alpha was set at ≤ 0.05 with all results reported as means 

(SD). 

 

2.4 Results 

2.4.1 Intra-rater reliability 

Data for D1 and D2 in Achondroplasia and control are displayed in Table 2.2. ICCs 

ranged from 0.908 - 0.997 for segment and total masses (Table 2.2). Coefficient of 

variation ranged between 11.2 - 25.2% for Achondroplasia and 7.8 - 18.1% for control 

over all segments (Table 2.2). No systematic bias existed (P > 0.05) in either group 

for any segment suggesting that the measurement of mass in all segments using 

DEXA were agreeable and reliable.  

 

2.4.2 Total-body composition 

There was no difference in age between groups (P = 0.487, Table 2.1). The group with 

Achondroplasia were 23% smaller in stature (P < 0.001), had 19% less body mass (P 

< 0.001) and had a 25% greater BMI (P < 0.001) than controls (Table 2.1). They also 

had 15% less total-body BMD (P < 0.001), 32% less BMC (P < 0.001) and 26% less FFM 

(P < 0.001) than controls (Table 2.1). There was no difference in fat mass between 
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groups (P = 0.447), but the group with Achondroplasia group had a higher body fat 

percentage than controls (P < 0.001, Table 2.1).  
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2.4.2.1 Segment Analysis 

MANOVA showed no difference in any body composition measure between left and 

right limbs therefore, data are presented as mean values between left and right 

limbs. The total-mass of all segments in the group with Achondroplasia were lower 

than controls (P < 0.001) and there were significant effects between groups’ BMC, 

BMD, FFM and body fat mass (P < 0.001, Table 2.3). 

 

2.4.2.2 Segment Length 

The lengths of the HaN, pelvis and HTP were not different between groups (P = 0.636; 

P = 0.601 and P = 0.097, respectively), but the group with Achondroplasia group had 

a shorter thorax (P = 0.006, Table 2.3). The group with Achondroplasia had a shorter 

UA (P < 0.001), FA (P < 0.001), thigh (P < 0.001), shank (P < 0.001) and foot (P < 0.001) 

compared to control, there was no difference in hand length between groups (P = 

0.893, Table 2.3). The total-arm and total-leg length of the group with 

Achondroplasia were shorter than controls (P < 0.001 and P < 0.001, respectively, 

Table 2.3).  

 

Relative to stature, the group with Achondroplasia had a longer HaN (P < 0.001), 

thorax (P = 0.002) pelvis (P < 0.001) and HTP than controls (P < 0.001, Table 2.4 and 

Figure 2.4). The group with Achondroplasia also had a shorter UA (P < 0.001), FA (P < 

0.001), hand (P = 0.021), thigh (P < 0.001) and shank (P < 0.001) than controls when 

relative to stature (Table 2.4 and Figure 2.4). Conversely, the group with 

Achondroplasia had a longer foot relative to stature than control (P < 0.001, Table 
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2.4 and Figure 2.4). Relative to stature, the total-arm and total-leg lengths were 

shorter in the group with Achondroplasia than controls (P < 0.001 and P < 0.001 

respectively, Table 2.4 and Figure 2.4). 

 

Relative to HTP, the group with Achondroplasia had a longer head (P = 0.010) and 

shorter thorax (P = 0.014) than controls, but there was no difference in pelvis length 

between groups (P = 0.538, Table 2.5 and Figure 2.5). When relative to the total-arm 

length, the group with Achondroplasia had a shorter UA (P < 0.001) but longer hand 

(P < 0.001) than controls; there was no difference in FA between groups (P = 0.133, 

Table 2.5 and Figure 2.5). There was no difference in thigh or shank length between 

groups when relative to leg length (P = 0.250 and P = 0.250, respectively), but the 

group with Achondroplasia had a longer foot than controls (P < 0.001, Table 2.5 and 

Figure 2.5). 

 

2.4.2.3 Segment Mass 

There was no difference HaN (P = 0.175), thorax (P = 0.230), pelvis (P = 0.393) or HTP 

mass between groups (P = 0.343, Table 2.3). The group with Achondroplasia had less 

UA (P < 0.001), FA (P < 0.001), hand (P < 0.001) and total-arm mass than controls (P 

< 0.001, Table 2.3). The group with Achondroplasia also had less thigh (P < 0.001), 

shank (P < 0.001) foot (P < 0.001) and total-leg mass than controls (P < 0.001, Table 

2.3).  

 

Relative to TBM, the group with Achondroplasia had more HaN (P < 0.001), thorax (P 
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< 0.001), pelvis (P < 0.001) and HTP mass than controls (P < 0.001, Table 2.4 and 

Figure 2.4). Relative to the TBM, the group with Achondroplasia had less UA (P < 

0.001), FA (P < 0.001) and total-arm mass than controls (P < 0.001), but no difference 

was found in hand mass between groups (P < 0.001, Table 2.4 and Figure 2.4). 

Relative to the TBM, the group with Achondroplasia had less thigh (P < 0.001), shank 

(P < 0.001) and total-leg mass than controls (P < 0.001), but there was no difference 

in foot mass between groups (P < 0.001, Table 2.4 and Figure 2.4).  

 

Relative to HTP mass, the group with Achondroplasia had more HaN (P = 0.032) and 

less thorax mass than controls (P = 0.023, Table 2.5 and Figure 2.5). There was no 

difference in pelvis mass relative to HTP between groups (P = 0.300). Relative to the 

total-arm mass, the group with Achondroplasia had less UA than controls (P < 0.001), 

but more FA and hand mass (P < 0.001 and P < 0.001 respectively, Table 2.5 and 

Figure 2.5). There was no difference in thigh or shank mass relative to total-leg mass 

between groups (P = 0.204 and P = 0.477, respectively). The group with 

Achondroplasia had more foot mass relative to total-leg mass than controls (P < 

0.001, Table 2.5 and Figure 2.5) 
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2.4.3 Segment mass composition 

2.4.3.1 Bone mineral content 

There was no difference in BMC of the HaN (P = 0.415), thorax (P = 0.234) or HTP (P 

= 0.166) between groups. The group with Achondroplasia had less BMC than controls 

in the pelvis (P = 0.004), UA (P < 0.001), FA (P < 0.001), hand (P = 0.001), arm (P < 

0.001), thigh (P < 0.001), shank (P < 0.001), foot (P < 0.001) and leg (P < 0.001, Table 

2.3). 

 

In the group with Achondroplasia, BMC relative to total-body BMC was higher in the 

HaN (P < 0.001), thorax (P < 0.001), HTP (P < 0.001), and hand compared to controls 

(P = 0.043). BMC relative to total-body BMC was not different between groups’ pelvis 

(P = 0.342, Table 2.4). In the group with Achondroplasia, BMC relative to total-body 

BMC was lower in the UA (P < 0.001), FA (P < 0.001) total-arm (P < 0.001), thigh (P < 

0.001), shank (P < 0.001), foot (P < 0.001) and total-leg compared to controls (P < 

0.001, Table 2.4). 

 

BMC relative to HTP was not different between groups in the thorax (P = 0.245) but 

was higher in HaN and pelvis in the group with Achondroplasia compared to controls 

(P = 0.004 and P = 0.002 respectively, Table 2.5). In the group with Achondroplasia, 

BMC relative to total-arm BMC was lower in the UA (P < 0.001), but higher in the 

hand compared to controls (P < 0.001, Table 2.5). Relative to total-leg BMC, the the 

group with Achondroplasia had a lower thigh BMC (P < 0.001) but a higher shank and 

foot BMC than controls (P < 0.001 and P < 0.001 respectively, Table 2.5). 
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2.4.3.2 Bone mineral density 

There was no difference in HaN or thorax BMD between groups (P = 0.526 and P = 

0.190, respectively). The group with Achondroplasia had lower BMD of the UA (P < 

0.001), FA (P = 0.004), hand (P = 0.002), total-arm (P < 0.001), pelvis (P = 0.047), thigh 

(P < 0.001), shank (P < 0.001), foot (P < 0.001) and total-leg compared to controls (P 

< 0.001, Table 2.3). There was no difference in BMD of HTP between groups (P = 

0.546, Table 2.3).  

 

Relative to total-body BMD, the group with Achondroplasia had a higher BMD of the 

HaN (P = 0.004), thorax (P = 0.011) and HTP (P < 0.001) than controls, but no 

differences were observed between groups’ pelvis (P = 0.822), UA (P = 0.634), FA (P 

= 0.141), hand (P = 0.812) or total-arm (P = 0.432, Table 2.4). The group with 

Achondroplasia had a lower BMD relative to total-body BMD, in the thigh (P < 0.001), 

shank (P = 0.005), foot (P = 0.001) and total-leg compared to controls (P < 0.001, 

Table 2.4). 

 

Relative to HTP BMD, there was no difference in thorax BMD between groups (P = 

0.637), but the group with Achondroplasia had a higher HaN (P = 0.039) and a lower 

pelvis BMD than controls (P < 0.001, Table 2.5). Relative to total-arm BMD, there was 

no difference in UA (P = 0.485), FA (P = 0.155) or hand BMD between groups (P = 

0.668, Table 2.5). Relative to total-leg BMD, the group with Achondroplasia had a 

lower BMD of the thigh (P = 0.002), but a higher shank BMD than controls (P = 0.011, 

Table 2.5). No difference in foot BMD relative to total-leg BMD existed between 

groups (P = 0.857, Table 2.5). 
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2.4.3.3 volumetric BMD 

The group with Achondroplasia had 31% less BMCLUM compared to controls (P = 

0.001). There was no group difference in BMDVOL between groups (P = 0.597, Table 

2.1). 

 

2.4.3.4 Fat free mass 

There was no difference in HaN or pelvis FFM between groups (P = 0.217 and P = 

0.365, respectively), but the group with Achondroplasia had less thorax and HTP FFM 

than controls (P = 0.005 and P = 0.013 respectively, Table 2.3). The group with 

Achondroplasia had less UA (P < 0.001), FA (P < 0.001), hand (P < 0.001) and total-

arm FFM than controls (P < 0.001, Table 2.3). The group with Achondroplasia also 

had less thigh (P < 0.001), shank (P < 0.001), foot (P < 0.001) and total-leg FFM than 

controls (P < 0.001, Table 2.3).  

 

Relative to total-body FFM, the group with Achondroplasia had more HaN (P < 0.001), 

thorax (P < 0.001), pelvis (P < 0.001) and HTP FFM than controls (P < 0.001, Table 

2.4). Relative to total-body FFM, the group with Achondroplasia has less FFM of all 

appendicular segments compared to controls (P < 0.05) other than hand and foot 

when no differences between groups were observed (P = 0.125 and P = 0.022, 

respectively, Table 2.4).  

 

Relative to HTP FFM, the group with Achondroplasia had more HaN and less thorax 

FFM than controls (P < 0.001 and P = 0.027, respectively); no difference in pelvis FFM 
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between groups was observed (P = 0.894). Relative to total-arm FFM, the group with 

Achondroplasia had less UA and hand FFM (P < 0.001 and P < 0.001, respectively), 

but more FA FFM compared to controls (P < 0.001, Table 2.5). Relative to total-leg 

FFM, there was no difference in thigh or shank FFM between groups (P = 0.910 and 

P = 0.388, respectively), but the group with Achondroplasia had more foot FFM than 

controls (P = 0.008, Table 2.5). 

 

2.4.3.5 Body fat mass 

There was no difference in absolute body fat mass between groups in any segment 

(P > 0.05, Table 2.3). 

 

When relative to total-body fat mass, there was no difference between groups’ HaN 

or thorax fat (P = 0.524 and P = 0.061, respectively), but the group with 

Achondroplasia had more pelvis and HTP fat compared to controls (P = 0.013 and P 

= 0.017, respectively, Table 2.4). There was no difference in FA (P = 0.299), hand (P = 

0.323) or total-arm fat (P = 0.431) when relative to total-body fat, but the group with 

Achondroplasia had more UA fat than controls (P = 0.025, Table 2.4). When relative 

to total-body fat, the group with Achondroplasia had less thigh (P = 0.003), shank (P 

= 0.034) and total-leg fat than controls (P = 0.001); there was no difference in groups’ 

foot fat (P = 0.865, Table 2.4). 

 

There were no differences in groups’ HaN, thorax or pelvis fat when relative to HTP 

fat (P > 0.05, Table 2.5). Relative to total-arm fat, the group with Achondroplasia had 
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less UA and FA fat compared to controls (P = 0.003 and P = 0.013, respectively); no 

difference in hand fat was observed (P = 0.066, Table 2.5). There was no difference 

in thigh (P = 0.770), shank (P = 0.847) or foot fat between groups when relative to 

total-leg fat (P = 0.053, Table 2.5).  

  



 81 

 

   



 82 

 

 

  



 83 

   



 84 

2.5 Discussion 

The aims of this study were to assess total-body, and segment, lengths and in vivo 

BMC, BMD, FFM and fat mass of adults with Achondroplasia and compare to 

controls. The main findings are that 1) adult males with Achondroplasia have shorter 

appendicular limbs and the same torso length to controls, 2) adults with 

Achondroplasia have less BMC, BMD and FFM than controls at the total-body and 

segmental level, but body fat mass was the same between groups, and 3) the 

differences in groups’ segmental lengths and body composition are lessened and at 

times removed when relative to total-body and total-limb measures.  

 

2.5.1 Segment lengths and masses 

Achondroplasia is a medically defined condition which is characterised by an 

inhibition of growth plate activity during maturation and is commented on by many, 

in anecdotal terms, as ‘rhizomelic’ limb lengths (Ponseti, 1970; Horton et al., 1978b; 

Owen et al., 1990; Horton et al., 2007; Matsushita et al., 2016). However, there is 

extremely limited empirical evidence to support this description in adults with 

Achondroplasia. Contrary to previous anecdotal reports (Ponseti, 1970; Horton et al., 

1978b; Hecht et al., 1988; Hunter et al., 1996a), absolute thorax length was 

significantly shorter in the current group with Achondroplasia compared to controls. 

When presented relative to stature, the thorax of the group with Achondroplasia was 

longer than controls, but no difference in HTP length was observed between groups. 

The data from the present study are similar to Nehme et al. (1976) and Owen et al. 

(1990) who measured torso length in individuals with Achondroplasia. Both observed 
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a shorter torso length (measured as sitting height) in their respective groups with 

Achondroplasia compared to controls, but Nehme et al.’s participants were aged 

between 0-18 years old (N = 11) while Owen et al. combined data from individuals 

with both Achondroplasia and Hypochondroplasia (a condition similar to 

Achondroplasia, but with milder symptoms). While the data from the present study 

appear to show that the torso of an individual with Achondroplasia is shorter than 

controls, when presented relative to the HTP, there are no differences in torso length 

between groups. 

 

This study also showed that appendicular segments of individuals with 

Achondroplasia were shorter than controls and shorter relative to stature. These 

findings are again consistent with Nehme et al. (1976) and Owen et al. (1990). Nehme 

et al. (1976) measured the lower limb lengths of a group with Achondroplasia, but 

present their data as standard deviations, without inferential analysis. In addition, 

the measurements made by Nehme et al. (1976) were conducted using radiography 

imaging. Although valid, the position of any individual’s body during imaging may 

have affected the perspective length of the limb. Owen et al. (1990) on the other 

hand used a measuring tape to record upper limb lengths of adults with 

Achondroplasia. As reported in the current Chapter, Owen et al. (1990) reported 

higher adiposity of their participants with Achondroplasia. It is likely that the 

measured limb length would have been larger in Owen’s group with Achondroplasia 

due to the curvilinear shape of a segment with high adiposity. Given the large 

difference in absolute limb lengths between Nehme et al. (1976), Owen et al. (1990) 

and the current group with Achondroplasia compared to their respective controls, 
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the position of the body would undoubtedly not affect the overall findings of a 

‘shorter appendicular limb’ compared to controls. The Euclidean measurement of 

limb length used in the current Chapter however, does allow for a more valid method 

of limb length measurement compared to those previously reported. Furthermore, 

the current study presents relative limb lengths of individuals with Achondroplasia 

which is unreported. 

 

When relative to their respective total-limb length, few differences in segment 

lengths were observed between groups. This suggests that that the proportional 

growth of long bones is similar between group, albeit a severe stunting in absolute 

growth in individuals with Achondroplasia. A notable observation though was that 

the foot of individuals with Achondroplasia was longer (relative to leg length) than 

controls. This is similar to previous observations (Egginton et al., 2006) and may 

impact gait kinematics, which in turn may alter physiological and biomechanical 

variables, such as metabolic cost and joint power. However, very few reports have 

been made correlating limbs lengths and joint kinematics in populations with 

Achondroplasia to comment further. 

 

Unsurprisingly, all absolute segment masses of individuals with Achondroplasia were 

less than controls. When presented relative to their respective total-segment masses 

though, differences between groups lessened. In some instances, the group with 

Achondroplasia had heavier segments; this is likely due to their larger amount of fat 

mass per segment compared to controls. Certainly, for the leg segments, there were 

no differences in groups thigh and shank mass, but the foot of the individuals with 
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Achondroplasia was relatively heavier (likely due to the additional length and 

possibly due to their higher BMC relative to total-leg BMC, discussed later). For 

functional measures, such as force production or walking, the thigh and shank appear 

to have similar amount of FFM which suggest that the same relative force could be 

produced by groups. This though, to the author’s knowledge, does not appear to be 

measured in adults with Achondroplasia. 

 

2.5.2 Bone mineral content and density 

Bone density is associated with fracture risk in all populations (Marshall et al., 1996). 

As shown in this Chapter, the group with Achondroplasia had a lower total-body and 

individual segment BMC and BMD than controls. Similar total-body BMD results 

(Taşoğlu et al., 2014; Matsushita et al., 2016) and mandible and lumbar spine BMD 

have been observed in adults with Achondroplasia (Arita et al., 2013). The results in 

the Chapter are only comparable to a few participants included in those studies 

though due to the participant demographics and classifications of the participants’ 

skeletal dysplasia used in all studies. In the present Chapter, the lower absolute BMC 

of the appendicular segments in the group with Achondroplasia suggest that the 

mutated FGFR3 gene not only results in shorter ‘long’ bones but may impact BMC 

within the bones. The lower BMD in the group with Achondroplasia is unsurprising 

given that the mutated FGFR3 gene results in shorter bones (Deng et al., 1996) and 

therefore less viewable area when DEXA scanning resulting in an under prediction of 

long bone’s BMD (Bianchi, 2007). This may be the case in the current study as total-

body and segmental values of BMC and BMD were lower than controls, to the point 
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where the group with Achondroplasia had a total-body BMD Z-score of -1.82. This 

would classify the group with osteopenia and at a ‘higher risk’ of bone fractures using 

the controls as reference data (French et al., 2002). Using total-body BMD to 

compare bone quality between groups of different limb length proportions, such as 

individuals with Achondroplasia, may lead to a misinterpretation of clinical state. In 

the current Chapter, BMC and BMD were made relative to total-body and total-limb 

masses to allow for a more informed comparison between groups. Scaling BMC and 

BMD did appear to remove statistical differences between groups.  

 

The BMDVOL was similar between groups despite the lower BMC of the group with 

Achondroplasia. Similar results of BMDVOL are observed in the literature when 

different sized vertebra are compared (Kröger et al., 1995; Lu et al., 1996). When 

relative to total-body values, the differences in groups’ BMC and BMD remained, but 

when relative to total-limb, differences between groups’ BMC and BMD values are 

removed and, at times, reverse. For example, in some segments, BMC was lower in 

the group with Achondroplasia than controls when relative to total-body BMC, 

suggesting that the mutated FGFR3 gene that causes Achondroplasia indeed alters 

the bone structure and quality rather than just the end plates (Horton and Lunstrum, 

2002). However, when the shank and foot BMC and BMD values was presented 

relative to their respective total-leg BMC and BMD values, the group with 

Achondroplasia had a higher BMC and BMD than controls. It is possible that these 

results are due to a higher magnitude of force and a more frequent application of 

force during activities of daily living, such as walking, for individuals with 

Achondroplasia than controls. This can partially be explained by the presented 
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results as the group with Achondroplasia have a greater upper body mass relative to 

total-body mass than controls. Therefore, the body weights (ground reaction force ÷ 

mass) experienced by the smaller foot and shank of individuals with Achondroplasia 

is likely to be higher than controls during walking and/or running. Such results are 

observed elsewhere in populations where mass distribution is manipulated 

(Browning and Kram, 2007; Grabowski and Kram, 2008), but are unconfirmed in 

populations with Achondroplasia. Furthermore, the shorter legs of individuals with 

Achondroplasia are likely to lead to a higher stride frequency at habitual walking 

speeds than controls, like that observed between groups of different stature (Minetti 

et al., 1994; Schepens et al., 2004). The higher relative ground reaction force and 

greater loading frequency would likely increase the bone turnover of individuals with 

Achondroplasia, leading to a higher BMC and BMD of their lower limb segments 

compared to controls. To back this theory in individuals with Achondroplasia though, 

either an in vitro analysis of their lower limb bones is required, or, a longitudinal 

analysis combining force development during activities, such as walking and/or 

running, and the monitoring of their BMC and BMD are required. Certainly, though a 

large population specific database is required for the BMC and BMD of individuals 

with Achondroplasia to be compared to allow clinicians to make informed 

classifications of their bone health. 
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2.5.2 Fat free mass and body fat 

The lower total-body and total-limb FFM of the group with Achondroplasia seen here 

would be explained, in part, by their shorter limbs and their higher total-limb fat 

mass. Similar to the bone density measures, when the FFM and fat of individual 

segments were presented relative to total-limb values, differences in both FFM and 

fat were somewhat removed; only lower FFM and fat of the arm segments were 

apparent in the group with Achondroplasia. The composition of the leg segments’ 

FFM within the group with Achondroplasia may therefore include the same relative 

contractile elements as controls and would likely produce the same amount of 

relative torque production as controls. This though, is yet to tested empirically. 

 

In controls, BMI is a widely used measure of estimating body fat as the two variables 

correlate positively (Flegal et al., 2009). In the present Chapter, the BMI and body fat 

percentage of the group with Achondroplasia would class them as ‘moderately 

obese’ and place them ‘at risk’ of cardiovascular disease (Després et al., 1990; 

Després et al., 2006; Freedman et al., 2013; Rabkin, 2014; Kihara and Matsuzawa, 

2015). Previous work by Hecht et al. (1987), and more recently Wynn et al. (2007), 

report high rates of cardiovascular disease attributed deaths in individuals with 

Achondroplasia (~32%). The data in this Chapter suggest the higher cardiovascular 

death rate this is attributed to the higher thorax and pelvis fat in the group with 

Achondroplasia, as higher levels of abdominal fat are associated with cardiovascular 

deaths in controls (Yusuf et al., 2004; Van Gaal et al., 2006). While the group with 

Achondroplasia have the same fat mass as controls in the thorax and pelvis, their 

masses relative to total-body values suggest a higher abdominal fat than controls 
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(Figure 2.6) and therefore a possible reason for the attributed cardiovascular deaths 

observed in the population. However, less HTP fat was observed in the individuals 

with Achondroplasia when presented relative to total-body fat, which contradicts the 

speculation above but is likely due to their relatively larger torso. To make any more 

substantial conclusions on this topic is difficult from the available data sets though. 

Further work investigating the longitudinal analyses of body fat and its distribution, 

diet and lifestyle (e.g. physical activity) is required in individuals with Achondroplasia. 
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Figure 2.6: A DEXA scan of a control (left) and a male participant with Achondroplasia 

(right) showing the distribution of fat, lean and bone mass (see scale below image). 

 

2.5.3 Clinical implications 

Achondroplasia is irreversible, but the development of bone following surgical 

procedures of bones, such as leg lengthening appear normal (Venkatesh et al., 2009; 

Park et al., 2015). Certainly, from the presented BMC and BMD data of the shank and 

foot relative to the total-leg values, it would be assumed that bone turnover and 

development is similar to controls despite the mutated FGFR3 gene. Furthermore, 
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the current data suggest that an increased BMC of all bones could be achieved in 

populations with Achondroplasia through appropriate interventions. Loading and 

stressing of bone through exercise interventions have been shown to improve BMC 

of ‘osteopenic’ groups. For example, in the elderly, BMD of the femoral neck (Vincent 

and Braith, 2002; Beavers et al., 2017) and lumbar column (Beavers et al., 2017) 

increase following resistance and aerobic exercise interventions, respectively. It is 

likely that the BMC, BMD and muscle mass (here as FFM) would improve (i.e. become 

higher) in populations with Achondroplasia through such exercise interventions. 

However, to date, there appears to be no structured exercise intervention aimed at 

improving bone health or FFM in any population with Achondroplasia. With the 

condition affecting bone end plate development and structure, it is likely that the 

ability of a person with Achondroplasia performing complex resistance exercises is 

different to controls. Therefore, it would be advised that movement analyses of 

different exercises be explored in the populations with Achondroplasia prior to 

intervening with previously utilised exercise modes.  

 

2.6 Conclusion 

The aim of this study was to measure and compare body composition between adults 

with Achondroplasia and controls. The main findings of this study were total-body 

composition of the group with Achondroplasia suggested they were ‘at risk’ of a 

number of health complications, such as osteoporosis. Scaling the body composition 

of individual segments to the respective HTP and total-limb mass however, was 

appropriate to remove these classifications in the group with Achondroplasia. 
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Further work is required to create databases for the body compositions of 

populations with Achondroplasia to be compared to.
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Chapter 3: The maximal oxygen uptake of adults 

with Achondroplasia  
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3.1 Abstract 

Individuals of shorter stature generally display a reduced absolute maximal oxygen 

consumption (V̇O2max , L ·min-1). The presentation of V̇O2max  relative to total-body 

mass (TBM) or fat free mass (FFM), removes statistical differences in V̇O2max  between 

different shorter and taller groups. In addition, physiological variables associated 

with V̇O2max may also help predict submaximal oxygen consumption (V̇O2) without 

the need to perform a V̇O2max test. The aim of this study was to 1) measure V̇O2max 

in adult males with Achondroplasia (N = 10, age 22 ±3 yrs) and age matched adults 

of average stature (controls, N = 17, age 22 ±2 yrs) and 2) observe any trends 

between V̇O2max  and other physiological variables. Indirect calorimetry was used to 

measure V̇O2max during an incremental treadmill test to volitional exhaustion. Heart 

rate (HR), minute ventilation (VE), tidal volume (VT), breathing frequency (Bf) and 

respiratory exchange ratio (RER) were also collected throughout the exercise 

protocol and correlated with V̇O2. The group with Achondroplasia had a 24% lower 

absolute V̇O2max  than to controls (P = 0.002). There was no difference between 

groups’ V̇O2max when relative to TBM or FFM (P > 0.05). Positive trends existed 

between percentage of V̇O2max  and HR, and VE respectively, for both groups (r = 

0.977 – 0.995, P < 0.001). These data suggest that V̇O2max relative to TBM and FFM 

are the same in between individuals with Achondroplasia and controls. Therefore, 

previously advocated exercise programmes used in controls, can be utilised in 

individuals with Achondroplasia. 

 

Key Words: Achondroplasia; Maximal oxygen consumption; Fat Free Mass 
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3.2 Introduction 

As reported in Chapter 2, Achondroplasia is a condition characterised by shorter 

stature manifested by a disproportionate limb-to-torso length compared to age 

matched individuals of average stature (controls). In groups of shorter stature, a 

reduced absolute maximal oxygen consumption (V̇O2max) is observed compared to 

taller groups (Ferretti et al., 1991; Cuneo et al., 1991; Woodhouse et al., 1999; Takken 

et al., 2007). There is however, a positive correlation between stature and mass and 

therefore the reduction of V̇O2max  in the shorter population is likely due to a lower 

total-body mass (TBM). For individuals with Achondroplasia, mass and height are 

disproportionate. Their shorter stature may therefore infer a lower V̇O2max, but their 

disproportionate mass to stature ratio may skew relative presentations of V̇O2max. 

The available V̇O2max data in populations with Achondroplasia is limited to one group 

of children and shows a lower V̇O2max than controls when presented absolutely and 

relative to TBM (Takken et al., 2007). There are however no V̇O2max data available in 

adult populations with Achondroplasia to help confirm this report. 

 

Exercise performance, health status and mortality can be predicated from the 

accurate measurement of V̇O2max  (Kodama et al., 2009). There is a high rate of 

cardiovascular related deaths in adults with Achondroplasia (Wynn et al., 2007; 

Hecht et al., 1987), which may be attributed to a lower V̇O2max compared to controls, 

but is unsubstantiated. An accurate prediction of V̇O2max is therefore imperative to 

understand any causative links to mortality within the group. Given the 

disproportionate mass-to-stature ratio of individuals with Achondroplasia, and their 
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apparent higher adiposity (Chapter 2), presenting their V̇O2max relative to TBM may 

under-predict their V̇O2max  and therefore misrepresent their health status. As 

mammalian skeletal muscle is reported to utilise ~90% of the consumed oxygen 

during exercise (Lolli et al., 2017), and assuming fat free mass (FFM) more accurately 

represents muscle mass than TBM, presenting V̇O2max relative to FFM may be more 

appropriate for individuals with Achondroplasia. Indeed for obese groups, presenting 

V̇O2max relative to FFM lessens the difference in absolute V̇O2max compared to lean 

groups (Goran et al., 2000; Lolli et al., 2017). In the reported child group with 

Achondroplasia, V̇O2max relative to TBM is 44% lower than controls (Takken et al., 

2007). Were FFM used to present V̇O2max in this group, instead of TBM, some of this 

difference may have been removed, leading to a more accurate representation of 

the group’s V̇O2max. To the author’s knowledge though, no such method has been 

made in any population with Achondroplasia. 

 

While V̇O2max is useful to describe and predict health status, exercise capacity, and 

mortality, it also affords the ability to help predict exercise intensities that can be 

used for cardiovascular training. For example, steady state exercise is commonly 

prescribed based on V̇O2max  or maximal heart rate (HRmax) values, as the two 

variables correlate positively during graded exercise in both lean and obese people 

(W. C. Miller et al., 1993; Strath et al., 2000). Physiological responses, such as training 

thresholds or oxidation of substrates, can be then be estimated based on 

percentages of V̇O2max or HRmax values (Achten and Jeukendrup, 2004; Helgerud et 

al., 2007). For adults with Achondroplasia though, there appears to be no data that 

indicate if physiological variables, such as oxygen uptake (V̇O2) and HR correlate. 
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Training programmes that are designed for individuals with Achondroplasia that are 

based on current methods may therefore be misleading. 

 

The aims of this study were therefore to describe the V̇O2max  of adults with 

Achondroplasia and compare them to controls. The primary objectives were to:  

1) collect V̇O2max in adults with Achondroplasia and compare to controls;  

2) attempt to account for any differences in absolute V̇O2max by presenting 

values relative to TBM and FFM;  

3) observe if V̇O2 correlates with physiological variables (namely HR) similarly in 

both groups.  

 

It was hypothesised that 1) the group with Achondroplasia would have a lower 

absolute V̇O2max, but differences would be reduced when presented relative to TBM 

and FFM; and, 2) V̇O2  would positively correlate with HR, but the similarity to 

controls is unknown. 

 

3.3 Methods 

3.3.1 Participants and general procedure 

Ten adults with Achondroplasia and 17 age matched controls that were free from 

lower limb injury volunteered to participate in the study and are described in Table 

2.1 in Chapter 2. All were experienced in treadmill running.  
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3.3.2 Anthropometric measures 

Participants’ TBM (kg) was obtained using electronic scales (SECA 813, CA 91710 

Chino, USA) while barefooted and wearing minimal clothing. FFM was obtained using 

Dual energy x-ray absorptiometry (DEXA), described in detail in section 2.3.2 of 

Chapter 2. 

 

3.3.3 Collection of oxygen consumption 

Expired gases, minute ventilation (V̇E), tidal volume (VT), breathing frequency (Bf) and 

respiratory exchange ratio (RER) were collected and analysed using portable breath-

by-breath indirect calorimetry (Metamax 3B, Cortex, Leipzig Germany), which was 

calibrated to the manufacturer’s guidelines prior to testing. The portable indirect 

calorimeter (weight = 1 kg) and a fitted face mask (Hans Rudolph V2, dead space 

between 125 – 143 ml) were worn by participants during the exercise bout (see 

Figure 3.1).  

 

3.3.4 Exercise protocol 

While wearing the above apparatus, a 5-minute warm up which consisted of a self-

selected jogging speed and self-prescribed light stretches was conducted by all 

participants prior to testing. Participants were also familiarised with treadmill 

running while wearing the portable calorimeter and facemask. To attain the speed 

at which V̇O2max would be obtained by all participants, a steady rate step protocol 

was used. Participants started running on a motor driven treadmill (Woodway PPS70) 

at 6 kph with a speed increment of 1 kph every 3 minutes added until the third stage 
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(8 kph) was completed. Both HR (Polar) and V̇O2  were recorded throughout the 

V̇O2max test. The estimated running speed from which V̇O2max would be achieved was 

obtained by extrapolating HR data to age predicted maximal HR (HRmax) 

(Achondroplasia 8.8 ±0.9 kph; controls 12.4 ±1.4 kph). A ramped protocol was then 

used to attain V̇O2max  where by participants ran at their respective extrapolated 

treadmill speed whilst treadmill incline increased 1%·min-1 from 1% until volitional 

exhaustion (Porszasz et al., 2003). V̇O2 data were analysed following the completion 

(MetaSoft®, Cortex, Leipzig Germany)  of the exercise with V̇O2max  identified as a 

plateau in the V̇O2 trace and met criteria described previously (Poole et al., 2008). 

Based on criteria for establishing V̇O2max (Poole et al., 2008) an observable plateau in 

V̇O2, RER >1.15 and HRmax within 10 bpm of age predicted maximum were considered 

with V̇O2max being recorded as a rolling average of 10 seconds either side of the peak 

V̇O2  curve, an example is given in Figure 3.2. HR, V̇E , VT, Bf and RER were also 

measured throughout the V̇O2max protocol with values taken over the same period 

V̇O2max was calculated. 

 

3.3.5 Presentation of maximal oxygen consumption 

Values for V̇O2max were presented as absolute values (L·min-1) and relative to TBM 

(ml·kg-1
×min-1) and FFM (ml·kgFFM

-1
×min-1). All other physiological variables are 

presented as absolute measures. 
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Figure 3.1: An example of a male participant with Achondroplasia wearing the online 

system and facemask. 

 

3.3.6 Statistical analysis 

All data were collated onto a personal computer (Macintosh, MacBook Pro) and 

statistically analysed using SPSS (v22.0, IBM). Data were confirmed parametric 

following Shapiro-Wilk and Levene’s tests. Independent t-tests were used to observe 

between group differences for absolute and relative measure of V̇O2max, HRmax, V̇E, 

VT, Bf and RER. One tailed Pearson’s correlations were performed between 

percentage of V̇O2max, V̇Emax and HRmax. Alpha was set at < 0.05 and all results are 

reported as mean (SD). 
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3.4 Results 

Anthropometric measures of all participants are described in Table 2.1 in Chapter 2. 

 

The group with Achondroplasia had a 28.8% lower absolute V̇O2max than controls (P 

= 0.002, Table 3.1). Relative to TBM and FFM, V̇O2max  was not different between 

groups (P = 0.228 and P = 0.991 respectively, Table 3.1). There was no difference 

between groups’ HRmax (P = 0.981), V̇E (P = 0.079), VT (P = 0.052), Bf (P = 0.301) or RER 

attained at  V̇O2max (P = 0.662, Table 3.1). There were positive correlations between 

absolute V̇O2max and TBM and, V̇O2max and FFM for the group with Achondroplasia (r 

= 0.817, P = 0.004 and r = 0.852, P = 0.002 respectively) and controls (r = 0.423, P = 

0.045 and r = 0.626, P = 0.007 respectively, Figure 3.3). Percentage of V̇O2max and V̇E 

correlated positively in both groups (Achondroplasia, r = 0.992, P < 0.001; Control: r 

= 0.995, P < 0.001) as did percentage of V̇O2max and HR (Achondroplasia, r = 0.982, P 

< 0.001; Control: r = 0.977, P < 0.001, Figure 3.4). No other physiological variable 

correlated with percentage of V̇O2max in either group. 
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Table 3.1: Physiological variables collected at V̇O2max  for the group with 

Achondroplasia and controls. Values displayed as mean (SD).  

 Achondroplasia  Control 

V̇O2max (L·min-1) 2.63 (0.59) ** 3.44 (0.64) 

V̇O2max (ml·kg-1·min-1) 42.2 (5.2)  44.7 (7.7) 

V̇O2max (ml·kgFFM
-1·min-1) 63.2 (8.0)  61.4 (8.7) 

HRmax (bpm) 193 (13)  193 (11) 

V̇Emax  (L·min-1) 100.8 (20.5)  115.6 (25.7) 

VTmax (L·min-1) 1.87 (0.71)  2.30 (0.42) 

Bfmax (b·min-1) 57.0 (9.3)  51.0 (10.2) 

RERmax 1.40 (0.30)  1.36 (0.18) 

HR, heart rate; V̇E,  minute ventilation; VT, tidal volume; Bf, breathing 
frequency; RER, respiratory exchange ratio; ** P < 0.001 
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3.5 Discussion 

The aim of this study was to measure V̇O2max in a group of adults with Achondroplasia 

and observe any trends between V̇O2 and physiological variables. The hypotheses 

were met in that the group with Achondroplasia had a lower absolute V̇O2max 

compared to controls and V̇O2 did correlate positively with HR and V̇E. When V̇O2max 

was presented relative to TBM or FFM though, no differences were observed 

between groups.  

 

3.5.1 Maximal oxygen consumption 

The main finding from the present study was that absolute V̇O2max was lower in the 

group with Achondroplasia compared to controls. All respiratory measures (V̇E, VT 

and Bf) at V̇O2max  were the same between groups. The similarity in respiratory 

measures is unsurprising as the chest circumference of children with Achondroplasia 

is the same as controls (Hunter et al., 1996b); this is likely reflected in adults. The 

lower absolute V̇O2max in the group with Achondroplasia is likely due to a difference 

in TBM and FFM between groups. This is supported somewhat by the positive 

correlations between absolute V̇O2max and TBM, and, absolute V̇O2max and FFM for 

both groups (Figure 3.3). Such correlations are consistent with exercising humans 

and animals (Rowland, 1989; Weibel and Hoppeler, 2005) and is therefore 

unsurprising that the difference in groups’ absolute V̇O2max is statistically removed 

when presented relative to TBM and FFM. It is surprising though, that both TBM and 

FFM are sufficient in removing the observed differences in absolute V̇O2max despite 

the lower total-body FFM relative to TBM in the group with Achondroplasia 
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compared to controls (Chapter 2); this is discussed further in section 3.5.2.  

 

Although the present data show V̇O2max  relative to TBM is similar between the 

current groups, this is dissimilar to the findings of Takken et al. (2007). In their study, 

the absolute V̇O2max and V̇O2max relative to TBM of children with Achondroplasia was 

44 and 30% less than reference data, respectively. This may be partly due to the fact 

that Takken et al. used reference data throughout their comparisons rather than 

collecting their own control data. A more likely reason for the difference in V̇O2max 

between the adult and child groups with Achondroplasia is the respective description 

of physical activity. The children with Achondroplasia included in Takken et al. were 

deemed less physically active than their reference data, whereas the current adults 

with Achondroplasia self-reported as being physically active to the same level as the 

control group (i.e. >2 hrs of physical activity per week), Section 2.3 of Chapter 2. 

Being less physically active moderately correlates with a lower V̇O2max (Lubans et al., 

2008; Lubans et al., 2009) and would partly explain the results both within the 

current Chapter compared to Takken et al. (2007). To further confirm this, measuring 

V̇O2max  in different cohorts with Achondroplasia (i.e. sex, age and activity levels), 

alongside respective controls groups, as done in the current study, is required.  

 

3.5.2 Relative values of maximal oxygen consumption  

In the present group with Achondroplasia, TBM and FFM were sufficient to account 

for the differences in absolute V̇O2max from controls. This is surprising given that in 

obese populations of average stature, FFM, not TBM, are more likely to remove the 
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statistical differences in V̇O2max between obese and non-obese adults  (Goran et al., 

2000; Dencker et al., 2011). It is possible therefore, that the 7% difference in body 

fat percentage between the two groups (Chapter 2) was not sufficient to see 

differences between V̇O2max when relative TBM or FFM.  

 

While FFM is a useful to somewhat normalise V̇O2max to controls’, it was assumed in 

the present Chapter that FFM more accurately represents muscle mass than does 

TBM. The inclusion, and presentation of, V̇O2max to muscle mass may therefore be 

more valid and accurate to describe the V̇O2max of individuals with Achondroplasia. 

Tolfrey et al. (2006) used muscle volume of the thigh to allometrically scale V̇O2max 

during treadmill running in children; this was due to the exponent of FFM being 

greater in children compared to adults. There is certainly some weight behind using 

leg muscle volume to scale V̇O2max, however, Tolfrey et al.’s conclusion was based on 

populations which were of different maturity and development, which influences the 

amount of muscle mass. Tolfrey et al. also showed that there was a positive 

correlation between muscle volume and FFM in children but not adults, suggesting 

that muscle volume is relatively lower in lighter children. In Chapter 2, it was 

observed that the FFM of the thigh and shank in the group with Achondroplasia were 

the same as controls when presented relative to total-leg FFM. This would suggest 

that using muscle volume as an allometric scalar, like that of Tolfrey et al., would be 

moot for the current groups. For future measurements of V̇O2max  or V̇O2  in 

individuals with Achondroplasia therefore, there is no need to allometrically scale 

such values. The data presented in this Chapter, and that from Chapter 2, would 

suggest that V̇O2max or V̇O2 relative to FFM is more appropriate for individuals with 
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Achondroplasia than when relative to TBM, despite the V̇O2max  relative to TBM 

values being similar to controls’. 

 

3.5.3 Relationships between physiological variables 

Lower values of V̇O2max are associated with increased risk of cardiovascular events 

and health problems (Kodama et al., 2009). With the V̇O2max being similar between 

the groups in this Chapter, when relative to TBM and FFM, the reported higher 

mortality of adults with Achondroplasia, due to cardiovascular events, may be due to 

other factors. This though is beyond the scope of this Chapter and thesis. The group 

with Achondroplasia in this study, and other populations with Achondroplasia 

(Horton et al., 1978a; Hecht et al., 1988; Owen et al., 1990; Hoover-Fong et al., 2007), 

do have higher levels of adiposity, which is linked to an increased risk of 

cardiovascular events (Després et al., 2006; Després, 2006) and is justification for 

further work in populations with Achondroplasia.  

 

Cardiovascular related exercise interventions have been carried out in numerous 

healthy and clinical cohorts to both improve V̇O2max and lower total-body adiposity, 

which in turn are likely to improve their health and life expectancy (Cuneo et al., 

1991; Woodhouse et al., 1999; Helgerud et al., 2007; Carazo-Vargas and Moncada-

Jiménez, 2015). The intensities of such programmes are based on relative values of 

maximal physiological variables, such as V̇O2max or HRmax. These relative values are in 

turn based on either, prior knowledge of the individual’s maximal values or, derived 

from a suitably comparable population’s maximal value. With Achondroplasia being 

disproportionate in mass and stature, the use of maximal values from groups of the 
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same mass or stature, (e.g. the obese or children) may be misleading for the 

population. The relationships of V̇O2 and HR, and, V̇O2 and V̇E were almost identical 

between groups in this Chapter. This suggests that different types of cardiovascular 

training aimed at improving either, aerobic capacity  or, weight management (e.g. 

endurance of high intensity) could be based on normative age and sex matched 

control data (Achten et al., 2002; Milanović et al., 2015). This suggestion however, is 

based purely on the data from the current Chapter. Further work would certainly be 

needed to confirm this in other populations with Achondroplasia (e.g. children, 

females or the elderly). To the author’s knowledge, there appears to be no empirical 

evidence that such interventions (i.e. the use of relative values of control V̇O2max or 

HRmax) have positive effects on the V̇O2max of individuals with Achondroplasia. 

 

3.6 Conclusion 

This study aimed to measure V̇O2max  and observe correlations between V̇O2  and 

physiological variable in adults with Achondroplasia and age matched controls. The 

results showed that absolute V̇O2max  of the group with Achondroplasia was 

significantly lower than controls. When absolute V̇O2max was presented relative to 

TBM and FFM however, no differences existed between groups. In addition, V̇O2 

positively correlated with HR and V̇E in both groups suggesting that cardiovascular 

programmes could be implemented in groups with Achondroplasia using the 

available reference data from controls. 
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4.1 Abstract 

The disproportionate body mass and leg length of individuals with Achondroplasia 

may affect their net oxygen consumption (V̇O2) and metabolic cost (C) when walking 

and running compared to those of average stature (controls). The aim of this study 

was to measure submaximal V̇O2 and C during a range of set walking speeds (SWS; 

0.56 - 1.94 m·s-1, increment 0.28 m·s-1), set running speeds (SRS; 1.67 - 3.33 m·s-1, 

increment 0.28 m·s-1) and a self-selected walking speed (SSW). V̇O2  and C was 

presented relative to total-body mass (TBM) and fat free mass (FFM) while gait speed 

was normalised to leg length using Froude’s number (Fr). The V̇O2TBM and V̇O2FFM  of 

the group with Achondroplasia were on average 29 and 35% greater during SWS (P < 

0.05) and 12 and 18% higher during SRS (P < 0.05) than controls, respectively. The 

CTBM and CFFM of the group with Achondroplasia were 29 and 33% greater during SWS 

(P < 0.05) and 12 and 18% greater during SRS (P < 0.05) than controls, respectively. 

There was no difference in SSW V̇O2TBM or V̇O2FFM between groups (P > 0.05), but 

CTBM and CFFM at SSW were 23 and 29% higher (P < 0.05) in the group with 

Achondroplasia compared to controls, respectively. V̇O2TBM and V̇O2FFM  correlated 

with Fr for both groups (r = 0.984 - 0.999, P < 0.05). Leg length accounted for the 

majority of the higher V̇O2TBM  and V̇O2FFM  in the group with Achondroplasia, but 

further work is required to explain the higher CTBM and CFFM at all speeds in the group 

with Achondroplasia compared to controls. 

 

Key words: Achondroplasia; Oxygen Consumption; Metabolic Cost; Walking; Running 
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4.2 Introduction 

The shorter lower limbs of populations with Achondroplasia compared to controls 

(Chapter 2) is likely to affect functional tasks, such as walking, which in turn is likely 

to affect the oxygen consumption (V̇O2) and metabolic cost of locomotion (C). For 

example, a higher stride frequency is observed in proportionally shorter statured 

groups compared to taller individuals during walking and running at the same speeds 

(Minetti et al., 1994). This in turn leads to a higher V̇O2 in the shorter groups at set 

walking speeds (Rowland and Green, 1988a). When gait speed is increased, such as 

during incremental walking and running, a positive curvilinear trend of absolute V̇O2 

exists in numerous cohorts (Rowland and Green, 1988a; Minetti et al., 1994; 

Schepens et al., 2004; van den Hecke et al., 2007). In proportionally shorter statured 

groups there is a higher V̇O2 compared to taller groups when walking and running at 

set speeds (Rowland and Green, 1988a; Minetti et al., 1994; Schepens et al., 2004; 

Ludlow and Weyand, 2015). As observed in Chapter 3, the differences in maximal 

V̇O2 between the groups was accounted for by total-body mass (TBM) and fat free 

mass (FFM), and have also been observed during incremental exercise in the obese 

(Goran et al., 2000; Browning et al., 2006).  

 

Accounting for leg length when presenting horizontal speed, as done with Froude’s 

number (Fr), further removes the observed difference in V̇O2 between shorter and 

taller groups during incremental or steady state exercise (Ferretti et al., 1991; Minetti 

et al., 1994; Steudel and Beattie, 1995; Steudel-Numbers et al., 2007; P. A. Kramer 

and Sylvester, 2012). The size, and therefore mass, of the torso between individuals 

with Achondroplasia and controls is similar, but with groups’ the leg lengths being 
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different, the ratio of torso-to-leg mass is greater in individuals with Achondroplasia 

(Chapter 2); this ratio has been shown to lead to a higher V̇O2 and C during walking 

and running in controls (Griffin et al., 2003; Browning et al., 2006; Beekley et al., 

2007; Peyrot et al., 2009; McCormick, 2014). The shorter legs of individuals with 

Achondroplasia is likely contribute to a higher V̇O2 than controls when exercising at 

the same speed (Minetti et al., 1994). Therefore, scaling V̇O2 separately to either leg 

length or body mass during incremental exercise would likely under- and over-predict 

the V̇O2 of individuals with Achondroplasia compared to controls. To the author’s 

knowledge though, there are no data pertaining to the measurement of V̇O2  in 

individuals with Achondroplasia during incremental exercise, let alone the scaling of 

V̇O2during incremental exercise.  

  

V̇O2 is useful to describe the cardiovascular response during exercise, but C describes 

the oxygen demand over a given distance (P. A Kramer and Sarton-Miller, 2008). For 

the same incremental walking that exhibits a positive trend of V̇O2 described above, 

a U-shaped curve of C exists with clear local minima (Ferretti et al., 1991; Minetti et 

al., 1994; McCann and Adams, 2002a; P. A Kramer and Sarton-Miller, 2008). This 

minimum suggests that respective slower and faster walking speeds are less 

economic, or, have a higher C (i.e. greater V̇O2 is required for the given distance). A 

local minima is observed at different speeds when stride frequency is manipulated, 

suggesting an optimal stride frequency for different speeds (Minetti et al., 1995). The 

local minima of C during walking is observed around self-selected walking (SSW) 

speed (Ralston, 1958), but has not been measured alongside set walking speeds in 

adults groups of shorter stature (Ferretti et al., 1991; Minetti et al., 1994; Minetti et 
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al., 2002). In groups of shorter stature, their higher C can be accounted for by their 

higher stride frequency (Minetti et al., 1994). The inclusion of Fr within the scaling 

procedures of C can help  the normalise stride frequency of set gait speeds while SSW 

may explain some of the expected U-shape curve of walking C in both individuals 

with Achondroplasia and controls.  

 

Therefore, the overriding aim of this study was to observe the relationship between 

V̇O2 and incremental walking and running in adults with Achondroplasia. The 

primary objectives were to:  

1) collect submaximal V̇O2 in adults with Achondroplasia and controls at 

differing absolute and relative (SSW) intensities of walking and running; 

2) convert V̇O2 into C values in all participants and; 

3) attempt to account for any differences in V̇O2 and C by normalising to body 

masses and leg length. 

 

It was hypothesised that the group with Achondroplasia would have a higher V̇O2 

and C at all walking and running speeds, but statistical differences would lessen once 

presented relative to TBM and FFM and by including leg length as a speed scaler. 

  



 118 

4.3 Methods 

4.3.1 Participants 

Ten adults with Achondroplasia and 17 age matched controls that were free from 

lower limb injury volunteered to participate in the study and are described in Table 

2.1 in Chapter 2. 

 

4.3.2 Anthropometric measures 

Leg length (m) of all participants was measured as the distance from the anterior iliac 

spine to the medial malleolus of the ankle while standing. Participants’ TBM (kg) was 

obtained using electronic scales (SECA 813, CA 91710 Chino, USA) while barefooted 

and wearing minimal clothing. FFM was obtained using Dual energy x-ray 

absorptiometry (DEXA), described in detail in section 2.3.2 of Chapter 2.  

 

4.3.3 Speed of locomotion 

SSW trials were completed by participants conforming to a habitual walking pace 

around the laboratory (~40 m). Each participant passed through two timing gates (1 

m apart), three times. SSW speeds (m·s-1) were calculated and recorded as an 

average of the three trials and used in V̇O2  assessment where individuals’ SSW 

intersected absolute speeds described below. V̇O2 collection apparatus (described in 

the next section) was worn throughout all exercise trials which were conducted on a 

motorised treadmill (Woodway PPS70, LOCAtion). Treadmill speeds were set at 0.56 

- 1.94 m·s-1 (increment 0.28 m·s-1) for walking and 1.67 - 3.33 m·s-1 (increment 0.28 
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m·s-1) for running, as described in Ferretti et al. (1991) and Minetti et al. (1994; 2002). 

All trials were completed at 1% gradient to replicate outdoor conditions (Jones and 

Doust, 1996) with each stage being 4 minutes in duration to attain steady state, again 

replicating Ferretti et al. (1991) and Minetti et al. (1994; 2002). Participants rested 

for ~5 minutes following all walking trials to reduce V̇O2. Where participants could 

not maintain running speed for the entirety of the 4 minutes during any walking and 

running intensity, the stage was omitted from analysis and the testing protocol 

terminated.  

 

4.3.4 Oxygen uptake, metabolic cost and their presentation 

Expired gases were collected and analysed using portable breath-by-breath indirect 

calorimetry (Metamax 3B, Cortex, Leipzig Germany), which was calibrated to the 

manufacturer’s guidelines prior to testing. The portable indirect calorimeter (weight 

= 1 kg) and a fitted face mask (Hans Rudolph V2, dead space between 125 – 143 ml) 

were worn by participants during the exercise bout. Prior to exercise testing, 

participants lay supine for 5 minutes so that resting metabolic rate (L×min-1) could be 

measured. Gross V̇O2  for each intensity was recorded with net V̇O2  calculated by 

subtracting resting metabolic rate from gross V̇O2  as conducted in Minetti et al. 

(1994; 2002), hereafter net V̇O2  is referred to as ‘ V̇O2 ’. Steady state V̇O2  was 

determined by a respiratory exchange ratio < 1.0 and by a visual plateau of V̇O2 over 

the final minute of exercise, with V̇O2  recorded as a rolling average of 6 

measurements (every 10 s) for each exercise intensity. C was presented as the 

amount of V̇O2 required to complete 1 km at each gait speed, given as (L·km-1). V̇O2 



 120 

and C were then normalised to TBM (V̇O2TBM ) and CTBM, respectively) and FFM 

( V̇O2FFM  and CFFM, respectively). All V̇O2  and C values were presented against 

absolute walking and running speeds, and against dimensionless Fr, given as: 

velocity2 (m·s-1) ÷ %leg length (m) · 9.81 (m·s-2). 

  

4.3.5 Statistical analysis 

All data were collated onto a personal computer (Macintosh, MacBook Pro) and 

analysed using SPSS (v22.0, IBM). Data were assumed parametric following Shapiro-

Wilk and Levene’s tests. To avoid a Type I error in the comparisons between groups’ 

V̇O2  and C measures, a 7x2 mixed design ANOVA was used to identify significant 

effects. However, only the differences between groups were of interest. Due to the 

subtle differences in leg length between the group with Achondroplasia and control 

participants, respectively, interpretation of the interaction between Fr and V̇O2 and 

C is more difficult. Due to the linear relationship between V̇O2  and Fr presented 

elsewhere (P. A Kramer and Sarton-Miller, 2008), the mean of each groups’ Fr and 

V̇O2 recorded at each walking and running condition using a Pearson’s correlation. 

Due to the curvilinear relationship between C and speed, the relationship between 

Fr and C was not inferentially compared. All results are reported as means (SD). 
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4.4 Results 

4.4.1 Participant anthropometrics 

The description of participants’ anthropometrics are given in Table 2.1 of Chapter 2. 

 

4.4.2 Self-selected walking 

The group with Achondroplasia were 23% slower than controls at SSW 

(Achondroplasia, 1.02 (0.13) m·s-1; control 1.33 (0.14) m·s-1, P < 0.001).  

 

4.4.3 Incremental exercise 

During V̇O2 assessment, both groups completed all walking speeds. However, only 

50% of the group with Achondroplasia managed to obtain steady state running at 

2.50 m·s-1 and only 20% maintained steady state running at 2.78 m·s-1. Therefore, 

V̇O2 and C values collected at all walking speeds and at running speeds 1.67 – 2.22 

m·s-1 were inferentially analysed (Figures 4.1 and 4.2). 

 

4.4.4 Oxygen consumption 

V̇O2WBM  were on average 29% greater in the group with Achondroplasia at all 

absolute walking speeds apart from SSW where no difference was observed (Figure 

4.1a). Similarly, the group with Achondroplasia had an average 35% greater V̇O2FFM 

at all absolute walking speeds compared to the control group, with no difference 

being found between groups at SSW (Figure 4.1b). There was no difference in V̇O2TBM 

between groups at running speed 1.67 m·s-1, but the group with Achondroplasia had 
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a 14% and 12% higher V̇O2TBM than controls at running speeds 1.94 and 2.22 m·s-1 

(Figure 4.1a). A higher V̇O2FFM  was observed in the group with Achondroplasia 

compared to controls for all running speeds (Figure 4.1b). 

 

4.4.5 Metabolic Cost 

On average, the group with Achondroplasia had a 29% higher walking CTBM and 33% 

higher walking CFFM when compared to controls (Figure 4.1c and 4.1d). Running CTBM 

were the same between groups at 1.67 and 2.22 m·s-1 (P > 0.05) whereas the group 

with Achondroplasia had a higher CTBM than controls at 1.94 m·s-1 (P < 0.05, Figure 

4.1c). The CFFM during running was, on average, 18% higher at all running speeds in 

the group with Achondroplasia compared to controls (P < 0.05, Figure 1d). 

 

  



 123 

·

·

a)

b) d

c

‡

† † † † ††

‡ ‡

‡ ‡

† † † † ††

Figure 4.1a and b: Mean SD (error bars) of net oxygen consumption (V̇O2) for the 

group with Achondroplasia (○) and control (

◻

) when walking (open) and running 

(closed) at absolute and SSW speeds (m·s-1); SSW are presented for the group with 

Achondroplasia (▲) and control (◆) respectively. V̇O2 is presented relative to a) 

total-body mass and b) relative to fat free mass * P < 0.05 at SSW between groups; 

† P < 0.05 between groups at paired walking speeds; ‡ P < 0.05 between groups at 

paired running speeds. V̇O2 and speed relationships are fitted with a 2nd order 

polynomial, with the broken and continuous lines being the trends for the group 

with Achondroplasia and controls, respectively. 
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Figure 4.1c and d: Mean SD (error bars) of net and metabolic cost (C) for the group with 

Achondroplasia (○) and control (

◻

) when walking (open) and running (closed) at 

absolute and SSW speeds (m·s-1); SSW are presented for the group with Achondroplasia 

(▲) and control (◆) respectively. C is presented relative to c) total-body mass and d) 

relative to fat free mass; C is also presented as the energy cost by considering 1 ml of 

O2 = 20.9 J. * P < 0.05 at SSW between groups; † P < 0.05 between groups at paired 

walking speeds; ‡ P < 0.05 between groups at paired running speeds. C and speed 

relationships are fitted with a 2nd order polynomial, with the broken and continuous 

lines being the trends for the group with Achondroplasia and controls, respectively. 

d)

c)

‡*

* ‡‡ ‡

† † † † ††

† † † † ††
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4.4.6 Froude comparisons 

Strong positive correlations existed between Fr and V̇O2TBM when walking (r = 0.998, 

P = 0.001) and running (r = 0.994, P = 0.070) for the group with Achondroplasia, and 

also for controls when walking (r = 0.997, P < 0.001) and running (r = 0.985, P < 0.001, 

Figure 4.2a, Table 4.1). There were also strong positive correlations between Fr and 

V̇O2FFM when walking (r = 0.999, P < 0.001) and running (r = 0.993, P = 0.036) for the 

group with Achondroplasia and for the control group when walking (r = 0.997, P < 

0.001) and running (r = 0.984, P < 0.001, Figure 4.2b, Table 4.1).  

 

 

  

Table 4.1: R2 values for the relationships between Froude’s number and relative 

presentations of oxygen consumption (V̇O2) in individuals with Achondroplasia and 

controls during walking and running.   

 Achondroplasia  Control 

 Walking Running  Walking Running 

V̇O2TBM 0.997 0.988  0.994 0.985 

V̇O2FFM 0.997 0.987  0.994 0.984 

V̇O2TBM , oxygen consumption relative to total-body mass; V̇O2FFM , oxygen 
consumption relative to fat free mass. All correlations significant to P < 0.001.  
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a)

b) d)

c)

Figure 4.2a and b: Mean net oxygen consumption ( V̇ O2) for the group with 

Achondroplasia (○) and control (

◻

) when walking (open) and running (closed) at 

mean Froude’s numbers (Fr); SSW are presented for the group with Achondroplasia 

(▲) and control (◆) respectively. V̇O2 is presented relative to a) total-body mass and 

b) relative to fat free mass; C is also presented as the energy cost by considering 1 

ml of O2 = 20.9 J. V̇O2 and Fr relationships are fitted with a linear trend line with the 

broken and continuous line being the trends for the group with Achondroplasia and 

control group, respectively. SD is omitted for clarity. 
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d)

c)

Figure 4.2c and d: Mean net metabolic cost (C) for the group with Achondroplasia (○) 

and control (

◻

) when walking (open) and running (closed) at mean Froude’s 

numbers (Fr); SSW are presented for the group with Achondroplasia (▲) and control 

(◆) respectively. C is presented c) relative to total-body mass and d) relative to fat 

free mass; C is also presented as the energy cost by considering 1 ml of O2 = 20.9 J. C 

and Fr relationships are fitted with a 2nd order polynomial with the broken and 

continuous line being the trends for the group with Achondroplasia and control 

group, respectively. SD is omitted for clarity. 
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4.5 Discussion 

The main aim of this study was to attain V̇O2  and C profiles during incremental 

walking and running in adult males with Achondroplasia and compare the results to 

controls. Further to this, in an attempt to account for potential differences, V̇O2 and 

C were presented relative to body masses and leg length in both groups. The 

hypotheses were partially met in that: 1) the group with Achondroplasia had a 

greater V̇O2TBM  and V̇O2FFM  during walking and running compared to controls and 

had a higher CTBM and CFFM (i.e. a greater V̇O2  for a given distance) at all walking 

speeds compared to controls; and, 2) leg length explained some of the difference in 

V̇O2TBM  and V̇O2FFM between groups but not for the comparison of CTBM and CFFM.  

 

4.5.1 Oxygen consumption 

Other than SSW, the V̇O2TBM and V̇O2FFM were higher at every walking and running 

speed in the group with Achondroplasia compared to controls. This is similar to 

previous reports, where shorter statured groups have higher V̇O2TBM  than taller 

counterparts during locomotion (Rowland and Green, 1988a; Minetti et al., 1994; 

Schepens et al., 2004; Ludlow and Weyand, 2015). The higher V̇O2TBM and V̇O2FFM at 

set speeds in the group with Achondroplasia is most likely due to them having a 

higher stride frequency than controls. Minetti et al. (1994) partially confirmed that 

higher stride frequency was the cause of higher V̇O2TBM in their African Pygmy group. 

While stride frequency was not measured in the present Chapter, the data presented 

by Minetti et al. (1994) would infer some similarities between groups. The Pygmies 

included in Minetti et al. (1994) were 16 cm taller than the group with 
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Achondroplasia presented here, while the two control groups were 1 cm different. 

With Pygmies being smaller and having a higher stride frequency compared to 

controls, it is likely that the even smaller group of individuals with Achondroplasia 

had a similar, if not higher, stride frequency to the Pygmies.  

 

While this Chapter does not directly measure factors that explain the higher V̇O2 of 

the group with Achondroplasia for a given speed of locomotion, there are a number 

of mechanisms that could explain these data. Firstly, the probable higher stride 

frequency of the group would lead to a greater amount of internal mechanical work 

being done compared to controls, as observed in other shorter statured groups 

(Ferretti et al., 1991; Minetti et al., 1994; DeJaeger et al., 2001; Minetti et al., 2002; 

Schepens et al., 2004; Weyand et al., 2010). A higher internal work not only requires 

energy to complete the work because it elicits a greater rate of muscular contraction. 

Assuming the fibre type distribution is the same between groups, the rate of 

muscular contraction is likely to alter the force-velocity relationship of the muscles 

within the individuals with Achondroplasia (Fletcher and MacIntosh, 2017). In this 

scenario, the muscles of the group with Achondroplasia would be producing less 

force due to the quicker movement of the limbs. Muscle activation could therefore 

be higher in the group with Achondroplasia to recruit the fibres required to maintain 

locomotion forces, therefore leading to a higher oxygen demand (Mian et al., 2006). 

However, internal work, force production (relative to gait requirements) and muscle 

activation have not been measured in individuals with Achondroplasia during gait; 

therefore, more work is required in this area to help confirm these theories. To try 

to account for the assumed higher stride frequency of individuals with 



 130 

Achondroplasia, and therefore eliminate some of the above, horizontal speed was 

presented as a normalised value by incorporating leg length in the form of Fr. 

 

4.5.2 Comparisons of Froude’s number 

In the current study, Fr could explain the variability of the groups’ V̇O2TBM and V̇O2FFM 

by as much as 98.7% (Figure 4.2a and 4.2b, Table 4.1). This matches much of the 

literature where Fr has been used to compare the relationship between leg length 

and V̇O2 during locomotion. Ferretti et al. (1991) and Minetti et al. (1994) showed 

African Pygmy’s V̇O2TBM  and Fr trends are similar to controls, with Minetti et al. 

(2002) also observing similar findings in patients with GHD. The similarity of the V̇O2 

and Fr trends between groups suggests that the difference in groups’ V̇O2TBM and 

V̇O2FFM can be accounted for by the shorter legs of individuals with Achondroplasia. 

The similarity in the slopes are not surprising given that V̇O2 correlates well with TBM 

and FFM (Goran et al., 2000; Weibel and Hoppeler, 2005). It is important to note here 

though, that although the relationships appear similar between the groups and 

between relative values of V̇O2 (Table 4.1), each mass relationship should not be 

used to estimate another. For example, in both groups a Fr of ~0.30 elicits a V̇O2TBM 

~15 ml·kg-1·min-1, whereas the same Fr elicits a V̇O2FFM ~20 ml·kg-1·min-1. While the 

inclusion of Fr accounted for the difference in V̇O2 by providing similar slopes for 

both V̇O2TBM  and V̇O2FFM  between groups respectively, Fr did not explain the 

difference in C between groups. 

 

  



 131 

4.5.3 Metabolic cost  

While V̇O2 is a useful parameter, it only describes the rate at which O2 is used, not 

the usage per unit distance. In contrast, C provides O2 usage per unit distance and 

can be converted into energy cost, assuming an energy equivalent of 20.9 J per 1 ml 

O2 (Figure 4.1b and 4.1d) and describes the energetic cost per unit mass and distance. 

Despite accounting for mass and distance travelled, the group with Achondroplasia 

exhibited a higher CTBM and CFFM during walking and running than controls. In 

addition, CTBM and CFFM at SSW occurred near the local minima of the trend lines for 

both groups but remained different between groups. The factors that may account 

for the difference in C between groups are again not investigated directly in this 

Chapter, but the available literature does allow insight into potential reasons to why 

these differences exists.  

 

The torso size (top of head to base of the pelvis, Chapter 2 Table 2.3) of individuals 

with Achondroplasia and controls is the same, but their legs are shorter. Individual 

with Achondroplasia therefore have a greater upper body (torso, as defined above, 

and both arms)-to-leg mass ratio than controls. Where additional mass is added to 

the torso of individuals exercising on a treadmill, a higher C is observed compared to 

individuals without additional mass (Griffin et al., 2003; Browning et al., 2006; 

Beekley et al., 2007; Browning et al., 2007; Peyrot et al., 2009; McCormick, 2014); 

the converse is observed when body weight is reduced through assisted treadmill 

running (Grabowski and Kram, 2008). While the present group with Achondroplasia 

were lighter than the control group, the additional torso mass of the group would 

have implications for the contractile properties of their smaller lower leg muscles 
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during stance. Firstly, relative to lower leg muscle mass, a greater vertical ground 

reaction force (vGRF) could be observed in the group with Achondroplasia during 

locomotion. The probable smaller muscle fibres of the lower limbs within individuals 

with Achondroplasia would therefore do more external work during the braking 

phase of stance to compensate for the relatively larger vGRF, eliciting a higher C 

(Pontzer, 2005; Grabowski and Kram, 2008). It is also possible that during the 

propulsion phase of gait, there is greater coactivation of the hamstrings in individuals 

with Achondroplasia, due to a greater joint laxity (reported through functional 

assessments (Bober et al., 2008)). Previously, a higher coactivation during gait 

contribute to negative work which has been associated with a higher C (Mian et al., 

2006).  

 

These theories to why the group with Achondroplasia have a persistently higher C 

during gait (e.g. mechanical work, force production and tendon compliance), are not 

substantiated in the literature though. Further work is therefore required to help 

explain the difference in C between individuals with Achondroplasia and controls. 

 

4.6 Conclusion 

This Chapter aimed to observe the relationship between V̇O2  and incremental 

walking and running speeds in adult males with Achondroplasia. To the author’s 

knowledge, this is the first study to compare V̇O2 and C during walking and some 

running speeds in adults with Achondroplasia and controls. The main findings are 

that 1) the V̇O2TBM and V̇O2FFM are higher in individuals with Achondroplasia at all 
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walking and running speeds compared to controls; 2) V̇O2TBM  and V̇O2FFM  is not 

different between groups at SSW; 3) CTBM and CFFM are higher in individuals with 

Achondroplasia than controls at all walking and running speeds, and 4) the inclusion 

of leg length as a speed scaler helped explain V̇O2 differences but not C differences 

between groups. The higher V̇O2TBM and V̇O2FFM in individuals with Achondroplasia 

are most likely due to a higher stride frequency, while their higher CTBM and CFFM is 

likely due to anthropometrical differences compared to controls.  
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5.1 Abstract 

Force production in able-bodied individuals (controls) is proportional to muscle size. 

Given the disproportionate nature of individuals with Achondroplasia, normalising to 

anatomical cross-sectional area (ACSA) is inappropriate. The aim of this study was to 

assess specific force of the vastus lateralis (VL) in 10 adults with Achondroplasia (22 

±3 yrs) and 17 age matched controls (22 ±2 yrs). Isometric torque (iMVCt) of the 

dominant knee extensors (KE) and in vivo measures of VL muscle architecture, 

volume, activation and patella tendon moment arm were used to calculate VL 

physiological CSA (PCSA), fascicle force and specific force in both groups. Muscle 

volume was 53% smaller in the group with Achondroplasia than controls (P < 0.001). 

KE iMVCt was 63% lower in the group with Achondroplasia compared to controls (P 

< 0.001). Activation and moment arm length were similar between groups (P > 0.05), 

but coactivation of the bicep femoris was 70% more in the group with 

Achondroplasia than controls (P < 0.001). The group with Achondroplasia had 58% 

less PCSA (P < 0.001), 29% lower fascicle force (P < 0.001) and 29% lower specific 

force than controls (P = 0.012). The smaller VL specific force in individuals with 

Achondroplasia may be attributed to infiltration of fat and connective tissue, rather 

than to any difference in myofilament function.  

 

Key Words: Achondroplasia; Specific Force, Vastus Lateralis 
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5.2 Introduction 

It was shown in Chapter 3 that differences in absolute maximal oxygen consumption 

(V̇O2max) between an adults with Achondroplasia and age matched average statured 

population (controls) is not different when relative to total-body mass and fat free 

mass. These data suggested that the aerobic capacity of muscle between groups was 

similar. Chapter 4 however, showed that submaximal oxygen consumption (V̇O2) and 

metabolic cost (C) was higher in adults with Achondroplasia compared to controls 

when walking and running at set speeds. Given than V̇O2 was similar between groups 

when leg length was accounted for, the higher C in the group with Achondroplasia is 

likely due to biomechanical differences, such as force production and activation 

profiles of gait related muscles. Both of which are currently unreported in 

populations with Achondroplasia. 

 

The contribution of force from the muscle in proportionally smaller groups has been 

investigated with force production appearing to be proportional to muscle 

morphology, such as muscle volume and fascicle length (Y. J. Janssen et al., 1999; 

Morse et al., 2008). Individuals with Achondroplasia have less fat free mass of the 

thigh compared to controls (Chapter 2) and therefore likely produce less force from 

the thigh muscles; this is obserevd in children with Achondroplsia during knee 

exenstion (Takken et al., 2007). The group with Achondroplasia having a similar 

amount of fat free mass of the thigh relative to total-limb fat free mass though 

(Chapter 2), it is probable that there is a similar relative force production of the thigh 

muscles compared to controls. Although there are strength measures in children with 

Achondroplasia (Takken et al., 2007), there is no comparison of force production 
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capacity in adults with Achondroplasia to controls, nor is there any measure of 

muscle morphology or size to present relative strength values. 

 

Muscle morphology, defined here as muscle size and architecture, is a primary 

determinant of muscle function and can account for some of the differences 

observed in proportionally smaller people (Kanehisa et al., 1994; Sartorio and Narici, 

1994; Bottinelli et al., 1997; Y. J. Janssen et al., 1999; Morse et al., 2008; O’Brien et 

al., 2010c; O’Brien et al., 2010d). Primarily, the determinants of muscle force are: 

muscle shortening velocity, physiological cross sectional area (PCSA) of the muscle, 

fascicle length and muscle volume, respectively (Narici et al., 1992). Neural factors of 

the agonists and antagonists also contribute to force production as well as the 

biomechanical form of the joint (Merton, 1954; Maganaris et al., 1998; Maganaris, 

2001). In numerous clinical conditions, such as the aging or individuals with Cerebral 

Palsy, the prevalence of weakness corresponds with functional impairments such as 

slower walking speeds and reduced performance of functional tasks (Hurley et al., 

1998; Dodd et al., 2002).  

 

The measurement of specific force integrates the measurement of muscle size, 

architecture, neural capacity and moment arm, providing a normalised value of force 

production (Erskine et al., 2009; Stebbings et al., 2014). While there is some 

variability in specific force, the values are similar across different cohorts, muscles 

and species (Degens et al., 1995; Maganaris et al., 2001; Morse et al., 2008; Erskine 

et al., 2009; Stebbings et al., 2014). While specific force is similar between muscle 

groups, such measurements in muscles of the leg, e.g. the vastus lateralis (VL), allow 
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an indication of gait ability and V̇O2 . The measurement of specific force, which 

accounts for neuromuscular, biomechanical and architectural properties of the 

myotendinous unit, should therefore allow for an accurate assessment and 

comparison of relative force production between individuals with Achondroplasia 

and controls. 

 

The aim of this study therefore is to assess specific force in adult males with 

Achondroplasia. 

The objectives of this study were to: 

1) measure the maximal voluntary contraction of the knee extensors in adults 

with Achondroplasia and compare to controls; 

2) identify the neural, morphological and biomechanical determinants of the 

vastus lateralis in adults with Achondroplasia and compare to controls; 

3) account for any difference in torque production between groups by 

calculating specific force. 

 

5.3 Methods 

5.3.1 Participants 

Ten adults with Achondroplasia and 17 age matched controls that were free from 

lower limb injury volunteered to participate in the study and are described in Table 

2.1 in Chapter 2. 
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5.3.2 Specific force calculation 

5.3.2.1 Strength measurements  

The torque derived from isometric maximal voluntary contraction (iMVCt) of the 

dominant KE (Achondroplasia n = 9/10 right leg, control n = 16/17 right leg) were 

recorded using an isokinetic dynamometer (Cybex Norm, Cybex International Inc., 

NY, USA). Participants were seated upright with the dynamometer and chair 

positioned in accordance with the calibration guidelines given by the manufacturer, 

so the lateral epicondyle was aligned with the dynamometer’s central axis of rotation 

(Figure 5.1). Particularly in the group with Achondroplasia, the chair and 

dynamometer were adjusted to align the lateral epicondyle if needed; additional 

padding was placed behind the spine to help maintain a static knee angle throughout 

contractions. The participants’ dominant leg was secured with Velcro straps to the 

chair on the distal portion of the thigh and to the dynamometer around the lower 

portion of the tibia (~80% tibia length), according to participant comfort. All 

participants warmed up by performing six continuous submaximal concentric 

contractions (60˚·s-1) of the KE and knee flexors (KF). Participants then completed a 

randomised trial of KE iMVCs at 10° intervals, between 60° and 100°, to anatomical 

zero (where 180° was anatomical zero). Due to the chair being repositioned in the 

group with Achondroplasia, joint angles were confirmed and recorded using a 

manual goniometer. Each participant received ~120 seconds rest between each trial. 

Throughout iMVC trials, participants were verbally encouraged to exert as much 

force as possible. Visual feedback was also provided to all participants on a monitor. 

KE and KF iMVCt values were recorded (2000 Hz) on a computer (Macintosh, iMac, 
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California) via an A/D converter using an acquisition system (AcqKnowledge, Biopac 

Systems, Santa Barbara, California). The angle that elicited peak KE iMVCt was used 

for subsequent analysis. 

 

5.3.2.2 Agonist activation 

Agonist activation of during KE iMVCt production is assessed to observed maximal 

activation of the muscle and is done so while participants are positioned in the 

isokinetic dynamometer. Firstly, a counter weight was fixed to the dynamometer to 

minimise the compliance of the device. To measure agonist activation, two rubber 

stimulation pads (size ranging from 70 x 90 to 180 x 100 mm; Uni-Patch, MN, USA) 

were placed proximally and distally along the transverse plane of the dominant 

femur (Figure 5.1). While in a relaxed state, a percutaneous electrical doublet 

stimulus (DS7, Digitimer stimulator, Welwyn, Garden City, UK) was passed through 

the KE at increased increments (~50 mV) and regular intervals (~20 seconds) until a 

plateau of twitch torque was measured. This supramaximal doublet stimulus was 

applied to the participants KE (inter-stimulus gap 10 µs and pulse width 50 µs) during 

KE iMVC. Doublet stimulus has been shown to improve the signal-noise ratio in the 

assessment of central activation (Belanger and McComas, 1981; Kent-Braun and Ng, 

1999). A second doublet was applied approximately 5 seconds after the first stimulus 

when the muscles were fully relaxed, termed the potentiated doublet. Agonist 

activation was calculated using the following equation: 
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𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	5.1:	𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	(%) 	= 	100	 ∙ K1	– M	𝑡	 − 	𝑖𝑀𝑉𝐶t	𝑇	 QR 

 

Where; t is the interpolated doublet amplitude of the twitch torque, iMVCt is the 

isometric maximal voluntary contraction torque and T is the potentiated doublet 

amplitude (Behm et al., 2001).  

 

5.3.2.3 Measurement of coactivation  

Co-activation of the KF was measured in all participants during a KE iMVC, and 

subsequent KF iMVCt produced at the angle at which peak KE iMVCt was measured. 

In order to determine coactivation of the KF, surface EMG was recorded over the 

biceps femoris (BF) as it is the largest of the KF group, and is representative of the KF 

group as a whole (Kellis and Unnithan, 1999). Furthermore, surface EMG was 

deemed adequate despite the adiposity levels in Achondroplasia (Owen et al., 1990; 

Hunter et al., 1996a; Hoover-Fong et al., 2007), as a linear relationship is observed in 

agonist and antagonist EMG between groups of differing adiposity (De Vito et al., 

2003). Boundaries of the BF were determined using ultrasonography (Technos MXP 

Biosound Esaote) to ensure consistent placement of EMG electrodes over the KF. 

When established two pre-gelled, unipolar, 10 mm, Ag-AgCl percutaneous 

electromyography (EMG) electrodes (Ambu Neuroline 720, Baltorpbakken, 

Denmark) were placed distally at ~1/3 of muscle length, to avoid the motor unit of 

the BF, and ~2 mm apart along the mid-sagittal plane of the muscle (NORAXON, 

Arizona, USA). A third electrode was placed on the lateral epicondyle of the same 

femur as a reference (Figure 5.1). Prior to the placement of the electrodes, areas of 
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the skin were shaved, then cleaned using an alcohol wipe to minimise skin impedance 

and hence improve the EMG signal. Raw EMG data were recorded at 2000 Hz, with a 

high and low band-pass filter set at 10 and 500 Hz respectively, and a notch set at 50 

Hz. The integral of the root mean square was recorded 0.5 seconds either side of the 

KE and KF iMVCt to quantify the level of KF muscle coactivation. Based on a linear 

relationship occurring between torque and EMG activity (Maganaris et al., 1998), KF 

torque during KE iMVC was derived by converting the percentage activation of KF 

EMG during KE iMVC to KF EMG during KF iMVC.  

 

	𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	5.2:	𝐾𝐹t	 = KU(𝐾𝐸	 ÷ 	𝐾𝐹) 	 ∙ 	100W	100 R ∙ 	𝐾𝐹	𝑖𝑀𝑉𝐶t 

 

Where KFt is the KF torque during KE (N×m), KE is the agonist EMG (mV) recorded of 

the KE during KE iMVC, KF is the antagonist EMG (mV) recorded of the KE during KE 

iMVC and KF iMVCt is the torque (N×m) observed during KF iMVC.  

 

The measurement of agonist and antagonist muscle activation are required for the 

accurate quantification of net KE iMVCt production, both of which are used in the 

calculation of specific force (Maganaris et al., 2001; Stebbings et al., 2014). 

Therefore, net KE iMVCt was given as the sum of KE iMVCt and KFt while a ratio of 

KF iMVCt and KE iMVCt was calculated to describe a balance of quadriceps to 

hamstring strength. 
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Figure 5.1: Example of the experimental setup of twitch torque activation and 

counterweight for a) controls and b) an individual with Achondroplasia, and c) the 

experimental set up for antagonist activation in a control participant. 

 

5.3.2.4 Measurement of muscle volume 

To measure VL ACSA, B-mode ultrasonography (Technos MXP Biosound Esaote) was 

used to obtain a 50 % muscle length transverse plane image of the VL (Reeves et al., 

2004c). The origin and insertion of the dominant VL were marked, along with regular 

intervals of the medial and lateral edges. Muscle length (cm) was determined by the 

distance between the origin and insertion points with the 50 % percentile marked on 

the skin. A wire mesh was secured to the skin using non-allergic tape along the 

transverse plane. The wires were separated ~3 cm apart and ran sagittal to the 

muscle to act as echo absorbing markers that projected a shadow on the ultrasound 

a) b)

c)c)
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image to act as reference points for analysis (Reeves et al., 2004c), see Figure 5.2. 

The 5 cm 7.5 MHz linear array probe was placed transversely to the VL with 

ultrasound transmission gel across the skin. While the probe moved from the medial 

to the lateral border of the VL, an audio video interleave (AVI) recording with a 

sampling frequency of 25 Hz (Adobe Premiere Elements version 10, Adobe Systems) 

was taken. The field of view was set so that anatomical references (femur and 

aponeurosis between VL and vastus intermedius) were visible at all times. 

Measurements were taken while the participant was supine and at rest. Individual 

images (between 5-9), with at least two wire references, were extracted from the 

recording and used to re-construct the muscle by overlapping the wire and 

aforementioned anatomical references, on photo editing software (Gimp, Version 

2.8.8, GNU Image Manipulation Program). Digitising software (NIH Image J, Version 

1.44o, National Institutes of Health, Bethesda, Maryland) was used to measure the 

ACSA of the VL (Figure 5.3). The volume of the VL was calculated using previously 

reported constants of MRI regression (Morse et al., 2007a), where:  

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	5.3:	 
𝑉𝐿	𝑉𝑜𝑙𝑢𝑚𝑒	 = M−2.92444 	+	0.743 	+	2.21782 	+ 	0.0244Q 	 ∙ 	𝑉𝐿	𝑙𝑒𝑛𝑔𝑡ℎ	 ∙ 	50%	𝐴𝐶𝑆𝐴 
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Figure 5.2: Experiment set up of muscle volume estimation for a) an individual with 

Achondroplasia and b) the identification of the mid-point of the vastus lateralis and 

the echo absorbing markers along the thigh’s transverse plane of a control’s leg. 

 

 

Figure 5.3:  An example of a 50% ACSA of scan for a) an individual with 

Achondroplasia and b) control. VL: Vastus Lateralis; VI: Vastus Intermedius; F: Femur. 

 

 

 

 

 

a) b)
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5.3.2.5 Muscle architecture  

In vivo muscle architecture of the VL was conducted using B-mode ultrasonography 

(Technos MXP Biosound Esaote) during KE iMVC to observe fascicle length (cm) and 

pennation angle (θ). The 5 cm, 7.5 MHz linear array probe was held on the mid-

sagittal plane on a previously established mid-point of the VL; measured equidistant 

from the origin-insertion and medial-lateral muscular borders. With water-soluble 

transmission gel the probe was held against, and at a perpendicular angle to, the skin 

with minimal pressure. The depth of view was set to ensure a number of fasciculi 

insertion points and deep aponeurosis were in view (Maganaris et al., 2001). 

Ultrasound imaging and torque production were synchronised using an external 

square wave voltage trigger enabling the accurate attainment of iMVC-to-

ultrasound. Image recordings were AVI format at a sample frequency of 25 Hz; single 

images were selected using capture software (Adobe Premiere Elements version 10, 

Adobe Systems). Images of the VL at rest and iMVC were analysed using digitising 

software (NIH ImageJ, Version 1.44o, National Institutes of Health, Bethesda, 

Maryland) whereby fascicle length was determined as the length between the 

superficial and deep aponeuroses (Narici et al., 1992). Pennation angle was defined 

as the insertion angle of the fascicle into the deep aponeurosis (Maganaris et al., 

2001). With the VL being one of the larger muscles in the body, invariably the 

dimensions of the probe were not large enough to capture a full fascicle. For these 

cases, linear extrapolation was used to determine fascicle length as little error (2-7%) 

is observed at the midpoint of the muscle (Fukunaga et al., 1996; Finni et al., 2003), 

again using digitising software described above. 
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5.3.2.6 Physiological cross-sectional area 

The PCSA (cm2) was estimated as the ratio of VL muscle volume to fascicle length 

(Maganaris et al., 2001), assuming the model used to calculate muscle volume is 

cylindrical and that the muscle fibres are constant length (Reeves et al., 2004c). 

 

5.3.2.7 Moment arm length 

A dual-energy X-ray absorptiometry (DEXA) scanner (Hologic Discovery, Vertec 

Scientific Ltd, UK), in single energy mode (100 kVp), was used to obtain moment arm 

length of the patella tendon (PTMA) (Erskine et al., 2014). Participants were asked to 

lie on their side in a relaxed state. The dominant knee was positioned at the angle 

acquired from optimal peak force production using a manual goniometer. A single 

array sagittal plane scan was taken of the knee using a 22.3 x 13.7 cm field of view 

(Figure 5.4). Obtained scans were exported to and analysed on a Dicom viewer (OsiriZ 

5.0.2, Pixmeo Sarl, Geneva, Switzerland). Moment arm length (m) was determined 

as the perpendicular distance between the estimated tibiofemoral contact point and 

the posterior aspect of the patella tendon (Tsaopoulos et al., 2006). 
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Figure 5.4: a) experimental setup of the sagittal plane single array scan and b) an 

example of the result and its analysis. Both images are from a control participant. 

 

5.3.2.8 Fascicle force and specific force  

To estimate VL fascicle force and in turn specific force the following steps were used: 

Patella tendon force (N) was calculated using equation 5.4 (Onambélé et al., 2007): 

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	5.4:	𝐹𝑃𝑇	 = 	𝑁𝑒𝑡	𝐾𝐸	𝑖𝑀𝑉𝐶t	𝑀𝐴  

 

Where FPT is the force at the patella tendon (N) during KE iMVC, net KE iMVCt is 

calculated above, and MA is the length of the moment arm (m). 

 

Previously reported data show the relative contribution of the VL to the patella 

tendon to be around 22% (Narici et al., 1992). Equation 5.5 was then used to calculate 

a) b)
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VL fascicle force by expressing the VL fascicle force as a ratio of the VL contribution 

to the cosine of the pennation angle (radians) at KE iMVC. 

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	5.5:	𝐹𝑎𝑠𝑐𝑖𝑐𝑙𝑒	𝐹𝑜𝑟𝑐𝑒	 = 𝑉𝐿𝑐𝑜𝑛𝑐𝑜𝑠𝜃  

 

Where VLCon is the VL contribution (N) and cos θ is the cosine of pennation at iMVC 

(radians). 

 

Specific force was represented as the ratio between VL fascicle force and VL PCSA.  

 

5.3.3 Statistical analysis 

All data were collated onto a personal computer (Macintosh, MacBook Pro, Apple 

Computer, Cupertino, California) and analysed using SPSS (v22.0, IBM). Data were 

confirmed parametric following Shapiro-Wilk and Levene’s tests. Independent t-tests 

were carried out on most measured variables. In addition, Pearson’s correlations 

were performed between related dependent variables. For variables that violated 

parametric assumptions, a Levene’s adjusted P value or a Mann-Whitney U (denoted 

by * and †, respectively, in Tables 5.1 and 5.2) was performed. Alpha was set at ≤ 0.05 

and all results are reported as means (SD). 

 

  



 150 

5.4 Results 

The description of participants’ anthropometrics are given in Table 2.1 of Chapter 2. 

 

5.4.1 KE and KF iMVCt 

Adult males with Achondroplasia produced 63% less KE iMVCt than controls (Table 

5.1). KF iMVCt was 82% lower in the group with Achondroplasia compared to 

controls (Table 5.1). When expressed as a ratio between absolute KE iMVCt and KF 

iMVCt, the group with Achondroplasia produced 49% more iMVCt from the KE 

compared to KF than controls (Table 5.2). 

 

5.4.2 Activation and coactivation 

There was no difference in maximal activation between groups, but the group with 

Achondroplasia had a 70% greater coactivation of the BF during KE iMVC compared 

to controls (Table 5.1). 

 

5.4.3 Net KE iMVCt 

Both groups increased KE iMVC by ~6% when corrected for BF coactivation (Table 

5.1). The net KE iMVCt produced by the VL was 63% less in the group with 

Achondroplasia compared to controls (Table 5.1). There was no significant 

correlation between body fat percentage and net KE iMVCt in the group with 

Achondroplasia (r = 0.110, P = 0.763) or controls (r = 0.411, P = 0.090). 
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5.4.4 Morphology and architecture 

The group with Achondroplasia had 41% smaller VL length than controls (Table 5.1). 

VL morphology differed between groups as the group with Achondroplasia had a 20% 

smaller ACSA (Table 5.1, Figure 5.5) and a 53% smaller VL muscle volume than 

controls (Table 5.1). The group with Achondroplasia exhibited a 17% greater 

pennation angle but 17% smaller fascicle length during KE iMVC than controls (Table 

5.1). PCSA was 42% smaller in the group with Achondroplasia compared to controls 

(Table 5.1). Correlations revealed no significant relationship between VL muscle 

volume and net KE iMVCt production in the group with Achondroplasia (R2 = 0.056, 

P = 0.508, Figure 5.5), whereas for the same variables in controls, a significant 

relationship did exist (R2 = 0.286, P = 0.022, Figure 5.5). Despite the diverging 

regression lines, a Z-transformation showed the slopes between groups were similar 

(P = 0.442). 

 

The group with Achondroplasia produced 53% less force per unit area compared to 

controls when presenting KE iMVCt as a ratio to ACSA (Table 5.2). When net KE 

iMVCt is expressed as a ratio to total-body mass, the group with Achondroplasia 

again display a 43% reduction to controls (Table 5.2). The group with Achondroplasia 

displayed a 67%, reduction in net KE iMVCt when presented as a ratio to fat free 

mass (Table 5.2). There was no relationship between ACSA and PCSA (R2 = 0.016, P > 

0.05) for the group with Achondroplasia, whereas a significant relationship for the 

same variables was observed for controls (R2 = 0.254, P = 0.032). 
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5.4.5 Force measurements 

The length of the PTMA were similar between groups (Table 5.1). Patella tendon force 

(60%), fascicle force (59%) and specific force (29%) were all lower in group with 

Achondroplasia compared to controls (Table 5.1).  

 

   

Table 5.1: Morphological and functional characteristics of the vastus lateralis in 

controls and adults with Achondroplasia adults. Values presented as mean (SD). 

  Control Achondroplasia P value 

iMVCt KE (N·m)  256 (47) 95 (24) < 0.001 

iMVCt KF (N·m) * 105 (19) 19 (7) < 0.001 

Activation (%) * 92.0 (5.9) 83.9 (13.9) 0.105 

Coactivation (%) * 12.6 (5.3) 42.6 (20.0) 0.001 

Net iMVCt (N·m) † 287 (49) 106 (26) < 0.001 

Volume (cm3) * 604 (102) 284 (36) < 0.001 

Fascicle Length (cm) * 8.2 (1.5) 6.8 (1.5) 0.027 

ACSA (cm2) * 27.7 (4.4) 22.2 (2.6) < 0.001 

Pennation Angle (°) † 17.4 (2.4) 20.9 (4.6) 0.027 

Muscle Thickness (cm) 28.4 (7.6) 20.6 (8.3) 0.550 

PCSA (cm2) 74.7 (13.7) 43.2 (9.9) < 0.001 

Moment Arm (m) † 0.040 (0.002) 0.037 (0.005) 0.309 

Patella Tendon Force (N) 7296 (1319) 2930 (974) < 0.001 

VL Fascicle Force (N) 1704 (303) 702 (235) < 0.001 

Specific Force (N·cm-2) † 23.6 (6.4) 16.7 (6.0) 0.014 

iMVCt, isometric maximal voluntary contraction torque; ACSA, anatomical cross-
sectional area; PCSA, physiological cross-sectional area. * adjusted P value 
following Levene’s; † Mann Whitney-U.  
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Table 5.2: Morphological and functional characteristics of the vastus lateralis 

normalised anatomical structures in controls and adults with Achondroplasia. Values 

presented as mean (SD). 

  Control Achondroplasia P Value 

iMVCt KE:KF (%) 41.1 (9.2) 20.2 (6.7) < 0.001 

VL Length:Stature (%) † 18.8 (0.8) 14.3 (0.7) < 0.001 

TBM:Volume (kg·cm-3) 7.76 (1.17) 4.65 (0.69) < 0.001 

Net iMVCt:ASCA (N·m·cm-2) 2.14 (0.37) 2.81 (0.73) 0.003 

Net iMVCt:TBM (N·m·kg-1) 3.72 (0.71) 1.71 (0.28) < 0.001 

Net iMVCt:FFM (N·m·kg-1) † 4.99 (0.78) 2.54 (0.43) < 0.001 

Net iMVCt:Volume (N·m·cm-3) 0.48 (0.08) 0.38 (0.10) 0.006 

PT Moment arm:VL Length (cm) † 11.78 (0.96) 19.07 (3.25) < 0.001 

Net iMVCt:PSCA (N·m·cm-2) 3.96 (0.99) 2.55 (0.80) 0.001 

VL, vastus lateralis; TBM, total-body mass, iMVCt, isometric maximal voluntary 
contraction torque; ACSA, anatomical cross-sectional area; PCSA, physiological cross-
sectional area; PT, patella tendon. † Mann Whitney-U.  

 

 

Figure 5.5: Scatter plot showing the relationship between VL muscle volume (cm3) and 

torque production (N·m) for the group with Achondroplasia (open) and controls 

(closed). Trend lines including R2 are also given for each group respectively. 
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5.5 Discussion 

This Chapter aimed to assess the in vivo muscle morphology, KE iMVCt production 

and specific force of the VL in adults with Achondroplasia and age-matched healthy 

adults. The main findings were 1) net KE iMVCt, VL ACSA, volume and PCSA were 

lower in adults with Achondroplasia compared to controls; 2) differences in net KE 

iMVCt were not accounted for by the differences in muscle size; 3) KF coactivation 

was higher in the group with Achondroplasia than controls, and; 4) when 

morphological, architectural, neurological and biomechanical differences were 

accounted for, a 29% smaller specific force was observed in the group with 

Achondroplasia.  

 

A large portion of neuromuscular function research describes the relationship 

between muscle size and force production, suggesting that muscle size is the 

predetermining factor for muscle strength (Maughan et al., 1983; Bruce et al., 1997; 

Tonson et al., 2008; Stebbings et al., 2014). Groups of shorter statures consistently 

present with smaller muscle size and lower MVC strength than their taller 

counterparts (Sartorio and Narici, 1994; Bottinelli et al., 1997; Y. J. H. Janssen et al., 

1999; Morse et al., 2008; O’Brien et al., 2010a; O’Brien et al., 2010c); when iMVCt is 

normalised to muscle size, differences between control and short stature groups are 

accounted for (Sartorio and Narici, 1994; Bottinelli et al., 1997; Y. J. H. Janssen et al., 

1999). The data from the present study is partially consistent with these previous 

findings. The group with Achondroplasia were 82% weaker than controls in terms of 

KE iMVCt, however this was not entirely accounted for by ACSA which was only 20% 
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smaller. It is likely therefore that architectural and neurological factors contribute to 

weakness in individuals with Achondroplasia. It should be noted however, that 

despite accounting for these factors, a deficit in specific force between groups 

remains. This could be subsequently attributed to physiological and/or 

biomechanical factors between groups or methodological measures of specific force, 

as discussed below. 

 

5.5.1 Muscle morphology in individuals with Achondroplasia 

The extent of group differences in muscle size between the observed groups was not 

consistent for each variable. For example, a 20% smaller VL ACSA in the group with 

Achondroplasia underestimated the difference in PCSA which was 42% smaller than 

controls. This was due to the smaller muscle length and hence smaller VL volume in 

the group with Achondroplasia compared to controls. ACSA must therefore be 

considered an inaccurate method of assessing contractile area between groups of 

heterogeneous muscle length such as presented here.  

 

Although PCSA is the closest approximation to sarcomeres in parallel and therefore 

contractile area (Lieber and Friden, 2000), it is possible that PCSA may be 

overestimated in the group with Achondroplasia. The over estimation of PCSA is 

likely due to the differences in architectural properties at iMVC between groups. In 

controls, increased tendon compliance (i.e. more strain when under a relative stress) 

alters muscle architecture at iMVC, with increased pennation angle, fibre shortening 

and a leftward shift in the length tension relationship is observed (Maganaris et al., 
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2001; Reeves et al., 2003a; Reeves, 2006). Only a larger pennation angle at iMVC was 

observed between groups in the present study, as resting fibre length not measured. 

Assuming the patella tendon of individuals with Achondroplasia is more compliant 

than controls, given the related observations in contractile properties with altered 

tendon compliance (Reeves, 2006), there is likely to be a greater fibre length of the 

group with Achondroplasia at iMVC compared to controls. PCSA is therefore 

overestimated as PCSA = ACSA ÷ fibre length. Given that PCSA is the denominator 

when calculating specific force, a large PCSA (with the same fascicle force) equates 

to a lower specific force. Were the fibre lengths of the group with Achondroplasia 

17% shorter and 17% more pennate at iMVC than controls, but the fibre angle 

remained the same between groups at KE iMVC, the fibre length of the group with 

Achondroplasia would be 9% longer than that presented. This would result in a 47% 

smaller PCSA compared to controls, 5% more than the measured values. This 

consequently leads to a 15% lower specific force in the group with Achondroplasia 

compared to controls.  

 

The difference in muscle architecture at iMVC between groups therefore appears to 

contribute to the difference in specific force and may be owing to a more compliant 

patella tendon of the group with Achondroplasia. However, there appears to be no 

quantitative measure of tendon compliance in any population with Achondroplasia 

within the literature to confirm this. Furthermore, this theory may only explain some 

of the 23% difference in specific force between groups.  
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5.5.2 Specific force 

Specific force provides an accurate representation of the in vivo contractile 

properties of the whole muscle and has been used to described the force 

characteristics of numerous different cohorts and muscle groups (Narici et al., 1992; 

Degens et al., 1995; Fukunaga et al., 1996; Maganaris et al., 2001; Morse et al., 

2007b; Morse et al., 2008; Erskine et al., 2009; O’Brien et al., 2010a; O’Brien et al., 

2010c; Stebbings et al., 2014). Recently it has been shown that inter-individual 

variability in the measurements of specific force alludes to the fact that population 

variance in specific force may be due to a lower fibre specific force (i.e. myofilament 

differences), or an overestimation of muscle area through the inclusion of non-

contractile material in the measurement of muscle mass (Stebbings et al., 2014). 

Several research groups have investigated specific force at the myofilament level to 

identify intramuscular differences (Trappe et al., 2000; Urbanchek et al., 2001; 

Trappe et al., 2003). With no apparent measure of force production made at the 

myofilament level in individuals with Achondroplasia, the lower specific force 

observed in the group could be due to the collagenous defect. That is, as the collagen 

formation in the endplates of the bone is different between individuals with 

Achondroplasia and controls, the collagenous connective tissue in muscle may alter 

the protein structures at the myofilament level. This theory though, is speculative as 

there appears to be no reports of muscle structure at the myofilament level in 

individuals with Achondroplasia. 

 

It is possible that the presentation of a lower specific force could be due, in part, to 

an overestimation of muscle size owing to the use of ultrasound to measure ACSA. 
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Ultrasound, as with MRI, requires the measurement of the area encapsulated by 

aponeuroses to determine ACSA. The area within these limits includes muscle, 

connective tissue and fat infiltration. Previous reports (Hecht et al., 1988; Owen et 

al., 1990; Hoover-Fong et al., 2007) and in this thesis (Chapter 2, Table 2.1) show that 

individuals with Achondroplasia have higher body fat percentage than controls. The 

fibroblast mutation that causes Achondroplasia may also play some part in 

connective tissue distribution within the muscle, although this is at present 

unreported. Therefore, the measured ACSA of the VL in individuals with 

Achondroplasia may reflect a “pseudohypertrophy” due to the probable higher 

amount of intramuscular fat infiltration, as observed in people with higher body fat 

(Tomlinson et al., 2014a). This pseudohypertrophy would increase muscle volume 

and PCSA measurement, with no change in contractile mass and in turn lower the 

calculation of specific force in individuals with Achondroplasia; it is important to note 

here that this methodological limitation is present in all populations and conditions. 

Regardless of these methodological discrepancies, when scaling strength and muscle 

size, a lower specific force persists in the present group with Achondroplasia, which 

could be attributed to either an infiltration of non-contractile material (i.e. fat), 

differences in single fibre properties or differences in tendon properties compared 

to controls. 

 

5.5.3 Coactivation and moment arm length 

In this study, the use of DEXA to measure PTMA led to two important observations of 

the knee in the group with Achondroplasia. Firstly, there appears to be a lower joint 
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congruency between femur and tibia in the knees with Achondroplasia (Figure 5.6), 

agreeing with observations made by Aykol et al. (2015). The apparent reduced 

tibiofemoral joint congruency in individuals in Achondroplasia would likely reduce 

tibiofemoral joint stability. In clinical, injured and juvenile populations, where joint 

congruency is lower, higher coactivation of the BF is observed during KE (Fairbank et 

al., 1984; Kellis and Unnithan, 1999; Kellis, 2003). In the present study, the group 

with Achondroplasia had a 70% higher coactivation of the BF during KE iMVC 

compared to controls. Therefore, the higher coactivation of the BF during KE iMVC in 

the group with Achondroplasia is likely due to the reduced tibiofemoral joint 

congruency and may act as an injury prevention mechanism. In this scenario, the 

hamstrings of individuals with Achondroplasia are activating during KE to reduce the 

anterior movement of the tibia in relation to the femur. This would protect 

ligamentous structures in the knee, such as the anterior cruciate ligament. It is 

possible that this mechanism exists in other muscle groups and joints around the 

body of an individual with Achondroplasia. The higher coactivation of hamstrings, 

and possible other muscles in individuals with Achondroplasia may also influence 

activities of daily living, such as metabolic cost (as observed in Chapter 4). There is 

however, a lack of comparative data expressing the activation profiles of the muscles 

in individuals with Achondroplasia during different intensities of contraction to 

expand on the theories presented. Therefore, the suggestions made from the current 

findings warrant further work. 
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Figure 5.6: Sagittal knee scans of the femoral contact point for an a) an individual 

with Achondroplasia and b) control participant. Note: the visible lower femoral 

contact point with the tibia in Figure 5.6a. 

 

The second observation from DEXA scan was that the absolute PTMA between groups 

was the same, meaning that individuals with Achondroplasia have a longer PTMA 

relative to the femur (here measured as VL length). This finding is different to other 

shorter statured groups who show a proportionally smaller moment arms compared 

to taller statured individuals (Morse et al., 2008). The relatively larger PTMA in the 

group with Achondroplasia likely aids KE torque production, despite the 63% lower 

net KE iMVCt compared to controls. For example, were the PTMA of the current group 

with Achondroplasia to be proportionally smaller to their femur length (i.e. 37% 

shorter), they would have produced 76% less net KE iMVCt than controls. Whilst PTMA 
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appears to aid torque production in individuals with Achondroplasia, PTMA changes 

during KE (Baltzopoulos, 1995; Maganaris et al., 1998; Maganaris et al., 1999) which 

leads to differences in force production (Tsaopoulos et al., 2006). In the present 

study, PTMA was measured at rest and did not account for changes of PTMA during 

contraction. It was assumed that the changes in PTMA during KE iMVC would be 

similar between groups as it is unreported if the same changes in PTMA occur in 

individuals with Achondroplasia during KE. Any change in the PTMA of individuals with 

Achondroplasia during contraction may further aid or hinder torque production of 

the group, but this is yet to be observed. The presented data from this study appears 

to be the only data that accounts for the moment arm of joints with Achondroplasia 

during contraction in any joint. 

 

5.6 Conclusion  

This is the first study, to the author’s knowledge, that has systematically accounted 

for various physiological and biomechanical modulators of force production in 

individuals with Achondroplasia. The main finding is that the group with 

Achondroplasia produced 29% less specific force than controls. These results may 

only explain the variance in muscle morphology as further work into methodological 

validity of measuring specific force in, and myofilament descriptions of individuals 

with Achondroplasia specific force is needed to further these data. 
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6.1 Abstract 

Achondroplasia is a genetic mutation of fibroblast growth factor receptor resulting 

in impaired growth plate development in long bones due to lower collagen turnover. 

Despite the characteristic shorter stature and lower strength in groups with 

Achondroplasia, little is known of the tendon’s mechanical properties under 

contraction. The aim of this study was to therefore measure the mechanical 

properties (stress, strain, stiffness and Young’s Modulus) of the patella tendon (PT) 

in 10 adults with Achondroplasia (22 ±3 yrs) and 17 male controls (22 ±2 yrs) at 

isometric maximal voluntary contraction (iMVC) using ultrasonography. The group 

with Achondroplasia produced 54% less stress at iMVC than controls (P < 0.001). 

Maximal excursion of the PT was 22% less at iMVC in the group with Achondroplasia 

compared to controls (P < 0.001), but there was no difference in strain between 

groups (P > 0.05). The PT were 47% less stiff (P < 0.001) and had a 51% lower Young’s 

modulus at iMVC (P < 0.001) in the group with Achondroplasia compared to controls. 

The PT of individuals with Achondroplasia are indeed more compliant than controls 

which may contribute to lower relative force production. The causes of this higher 

compliance are unclear but are likely due to the collagen related genetic mutation 

which causes Achondroplasia. 
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6.2 Introduction 

The previous Chapter observed a lower specific force of the vastus lateralis (VL) in 

adults with Achondroplasia compared to age matched adults of average stature 

(controls). The lower specific force may be accounted for by the methods used to 

measure specific force, myofilament differences between groups, or the mechanical 

properties of the patella tendon between groups. Given the stature and leg length 

differences between groups (Chapter 2) there is likely to be a difference in patella 

tendon length. While fibroblast growth factor receptor (FGFR3) is linked 

unequivocally with bone development, due to the collagenous association, it is 

possible that the mutation is likely to alter other collagenous structures, such as the 

tendon, but the mechanical properties of any tendon are yet to be reported 

empirically for individuals with Achondroplasia. 

 

For groups of shorter statures, such as individuals with Achondroplasia, it would be 

appropriate to acknowledge the probable down-scaling of tendon morphology as 

well as the properties of the tendon during muscular contraction. For example, the 

shorter patella tendon length in children compared to adults can be normalised 

entirely by the proportionally smaller morphological differences of the tendon 

(O’Brien et al., 2010b). During loading though, both the force production passing 

through the tendon and the amount of lengthening the tendon goes through 

contribute to the tendon’s ability to transfer force from muscle to bone (Maganaris 

and Paul, 2000a; Hewett et al., 2005; Arampatzis et al., 2006; Onambélé et al., 2006; 

Reeves, 2006; Fletcher et al., 2010). A tendon that lengthens more for a given force 

production is more compliant and less effective at transferring force to the bone, due 
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in part to the characteristics of fascicle shortening (Reeves, 2006). Whilst tendon 

loading and excursion during contraction have been described for differing human 

populations, both in vivo and in vitro, there remain no data for populations with 

Achondroplasia.  

 

As observed in the previous Chapter, isometric maximal voluntary contraction torque 

(iMVCt) of the knee extensors (KE) was lower in adults with Achondroplasia 

compared to controls. Furthermore, a lower force was recorded at the patella tendon 

(FPT) in the group with Achondroplasia compared to the control group. Force 

measured at a tendon can be normalised to its cross-sectional area (CSA) and 

presented as stress (tendon force/tendon CSA). In children, CSA of the patella tendon 

(CSAPT) helps scale absolute measures of FPT when compared to adults, suggesting 

that tendon volume is proportional to stature (O’Brien et al., 2010b). In 

disproportionately sized groups, such as those with Achondroplasia, there may well 

be a scaling factor of FPT to CSAPT, but the magnitude of scaling is currently 

unreported. While stress is the normalised tendon force, strain is normalised tendon 

excursion. Defined as the ratio of length change to resting length, strain is a 

dimensionless number that provides a relative difference in tendon extensibility. For 

groups such as children, this is useful given the proportionally shorter tendons and 

shows children’s tendons deform more under the same loading as adults (O’Brien et 

al., 2010b); as with stress though, no strain measures have been reported in the 

tendons of individuals with Achondroplasia.  
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The ratio of stress and strain gives Young’s Modulus which provides the material 

properties of the tendon (Maganaris, 2002; Onambélé et al., 2007; Onambélé et al., 

2006; Reeves, 2006; Seynnes et al., 2009). The observations of Young’s Modulus 

made in child tendons suggest that that there are intrinsic differences between child 

and adult tendons. Given the likely smaller, but unknown scaling differences, of 

tendon morphology between individuals with Achondroplasia and controls the 

calculation of Young’s Modulus would help to firstly normalise mechanical properties 

of the patella tendon between individuals with Achondroplasia and controls and 

thereafter infer the intrinsic properties of the patella tendon. 

 

The aim of this study was therefore to measure the in vivo material properties of 

patella tendon in adults with Achondroplasia and compare them to controls.  

The objectives of this chapter were to: 

1) measure the in vivo excursion of the patella tendon in both groups during 

maximal voluntary contraction using ultrasonography; 

2) measure the in vivo contractile properties of the vastus lateralis during 

maximal voluntary contraction in both groups using ultrasonography; 

3) Measure the in vivo mechanical properties of both groups’ patella tendon 

through the measurement of Young’s Modulus. 
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6.3 Method 

6.3.1 Participants 

Ten adults with Achondroplasia and 17 age matched controls that were free from 

lower limb injury volunteered to participate in the study and are described in Table 

2.1 in Chapter 2. 

 

6.3.2 Patella tendon cross sectional area 

While at rest participants sat in an isokinetic dynamometer with their dominant leg 

strapped into the lever arm so that 90° of knee flexion was attained (180° = full 

extension). Patella tendon origin and insertion were identified using ultrasonography 

(Technos MXP Biosound Esaote, UK) by holding a 5 cm 7.5 MHz linear array probe in 

the sagittal plane to the patella tendon. Positions were marked on the skin and 

measured using a tape measure. Intervals (25, 50 and 75%) of tendon length were 

measured and marked transversely. CSAPT was taken by applying water-soluble 

transmission gel to the probe and placing along the sagittal plane of the patella 

tendon at the marked percentages of patella length with minimal pressure. Depth of 

view was such that medial and lateral borders of the patella tendon were viewable. 

Image recordings were AVI format at a sample frequency of 25 Hz; single images were 

selected using capture software (Adobe Premiere Elements version 10, Adobe 

Systems) and analysed using digitising software (NIH ImageJ, Version 1.44o, National 

Institutes of Health, Bethesda, Maryland). High reliability has been shown measuring 

patella tendon length (Skou and Aalkjaer, 2013) and CSAPT with ultrasound (Gellhorn 
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and Carlson, 2013). Patella tendon volume was calculated using the truncated cone 

method (Figure 6.1): 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	6.1.1:	𝑅	 = 	i		𝐴		𝜋 	
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	6.1.2:	𝑇𝐶𝑉	 = 	𝜋3 	 ∙ j𝐿kl 	 ∙ 	 U𝑅12	 + 	𝑅22	 +	(	𝑅1	 ∙ 	𝑅2)Wm	

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	6.1.3:	𝐶𝑉	 = 	 (𝐴	 ×	𝐿kl)3 	
	𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	6.1.4:	𝑇𝑒𝑛𝑑𝑜𝑛	𝑉𝑜𝑙𝑢𝑚𝑒	 = 	𝐶𝑉𝑝𝑟𝑜𝑥	 + 	𝑇𝐶𝑉1	 + 	𝑇𝐶𝑉2	 + 	𝐶𝑉𝑑𝑖𝑠𝑡 

 

Where R is the radius (cm) of a given scan, A is the measured CSAPT (cm2), TCV is the 

mid-proximal (TCV1) and mid-distal (TCV2) truncated cone volumes (cm3) 

representing 25-50% and 50-75% of the tendon respectively, LPT is patella tendon 

length (cm) between two measured points, R1 and R2 are the radii (cm) of two scans 

respectively, while CV is cone volume (cm3) of the proximal (CVprox) and distal cone 

(CVdist) representing 0-25% and 75-100% of the tendon respectively. Tendon volume 

(cm3) is the sum of all inter-scan volumes.  
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Figure 6.1: a) Schematic depicting the calculation of tendon volume using the 

truncated cone method and b) transverse ultrasound scans of the patella tendon CSA 

at 25% (top), 50% (middle) and 75% (bottom) of patella tendon length for an 

individual with Achondroplasia (Left) and control (Right) participant. 

 

6.3.3 Knee extensor torque measurements 

iMVCt of the dominant KE (Achondroplasia N = 9/10 right leg, control N = 16/17 right 

leg) were recorded using an isokinetic dynamometer (Cybex Norm, Cybex 

International Inc., NY, USA). Participants were seated upright with the dynamometer 

and chair positioned in accordance with the calibration guidelines, so the lateral 

epicondyle was aligned with the dynamometer’s central axis of rotation (see Figure 

5.1 in Chapter 5). Particularly in the group with Achondroplasia, the chair and 

dynamometer were adjusted to align the medial malleolus if needed. Additional 

padding was placed behind the spine to stabilise the individual to ensure the knee 

maintained the set position throughout contractions. Velcro straps were used to 
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secure the dominant leg to the chair via the distal portion of the thigh, while the lever 

arm was attached to the tibia at ~80% of its length. Participants warmed up by 

performing six continuous submaximal concentric contractions of the KE and knee 

flexors (KF). To reduce the effect of creep in the patella tendon, participants 

completed four KE iMVCs at 90° flexion (180° = full extension) with ~120 seconds rest 

between trials (Pearson et al., 2007). Following warm up, two iMVC trials were 

recorded with participants verbally encouraged to exert as much force as possible. A 

ramped MVC, lasting ~5 s, was instructed with visual feedback provided to all 

participants, iMVC was assumed based upon a visible plateau of KE torque on a 

monitor. KE torque values were recorded (2000 Hz) on a computer (Macintosh, iMac, 

Apple Computer, Cupertino, California) using an acquisition system (AcqKnowledge, 

Biopac Systems, Santa Barbara, California).  

 

6.3.4 Vastus lateralis architecture and fascicle displacement 

The origin and insertion of the VL were identified using B-mode ultrasonography 

(Technos MXP Biosound Esaote) by holding the probe along the transverse plane of 

the muscle. Upon identification of landmarks, a tape measure was used to determine 

VL length. In vivo muscle architecture of VL was measured using B-mode 

ultrasonography during the last warm up KE iMVC to observe fascicle length (cm) and 

pennation angle (θ). Both fascicle length and pennation were measured during rest 

and iMVC to observe the change in each respective variable (Figure 6.2). The same 

linear array probe described above was held on the mid-sagittal plane on a previously 

established mid-point of the VL; measured equidistant from the origin-insertion and 
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medial-lateral muscular borders. With water-soluble transmission gel, the probe was 

held normal to the skin with minimal pressure. View depth was set to ensure a 

number of fasciculi insertion points and deep aponeurosis were in view (Maganaris, 

2001). Imaging and torque production were synchronised by an external voltage 

trigger enabling the accurate attainment of iMVC-to-ultrasound. Image recordings 

were AVI format at a sample frequency of 25 Hz; single images were selected using 

capture software (Adobe Premiere Elements version 10, Adobe Systems). Images of 

the VL at rest and iMVC were analysed using digitising software (NIH ImageJ, Version 

1.44o, National Institutes of Health, Bethesda, Maryland). Fascicle length was 

determined as the distance between the superficial and deep aponeuroses along a 

visible fascicle (Maganaris, 2001). Pennation angle was defined as the insertion angle 

of the fascicle into the deep aponeurosis (Maganaris, 2001). With the VL being one 

of the larger muscles in the body, invariably the dimensions of the probe were not 

large enough to capture a full fascicle, for these cases linear extrapolation was used 

to determine fascicle length as little error (2-7%) is observed at the midpoint of the 

muscle (Fukunaga et al., 1996; Finni et al., 2003), again using digitising software 

described above. 
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Figure 6.2: Sagittal scans of the VL at rest (a = control, c = Achondroplasia) and at 

iMVC (b = control, d = Achondroplasia). Deep aponeurosis is highlighted along with a 

fascicular insertion. VL, Vastus Lateralis; VI, Vastus Intermedius; F, Femur. 

 

6.3.5 Tendon elongation measurements 

Tendon elongation was observed from rest to iMVC. 50% of the measured resting 

tendon length described above was used to place a thin (~10 mm) echo absorbing 

marker (Micropore tape) on the skin, across the tendon, to act as a reference marker 

(Figure 6.3). The ultrasound probe was held in the sagittal plane over the patella 

tendon so that the reference marker was identifiable with both the patella tendon 

origin (proximal, trial 1) and the patella tendon insertion (distal, trial 2) in the same 

image. Ultrasound images were then stitched together using digitising software 

(GIMP) and analysed using Image J. High reliability (r = 0.910) of tendon excursion 

using this method is reported elsewhere (Onambélé et al., 2007). Participants were 

instructed to perform a ramped iMVC where the test was terminated once a plateau 

of torque trace was observed on a monitor. Ultrasound imaging and torque 

production were synchronised using an external voltage trigger enabling the 
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accurate attainment of iMVC-to-ultrasound. As described by Onambélé et al. (2007), 

analysis of the images were completed after the calculation of torque at 10% 

intervals of iMVC, where excursion was determined from the respective origin and 

insertion of the tendon to the respective superior and inferior edge of the reference 

marker (Figure 6.4). At each 10% interval of iMVC, the displacement of the patella 

tendon from the respective trial 1 and trial 2 measurements were summed with the 

individual measurement of echo absorbing tape to calculate tendon length, as 

described elsewhere (Onambélé et al., 2007). Elongation of the patella tendon was 

recorded once, but to ensure intrascan reliability, images were digitised twice on 

separate occasions. These values were then used to determine total strain described 

below.  
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Figure 6.3: a) proximal (top) and distal (bottom) markers that identify absolute and 

proportionally patella tendon lengths for a control participant, b) ultrasound probe 

placement that observes the proximal and reference marker (echo absorbing tape) 

for a control participant, and c) a participant with Achondroplasia in the experimental 

set up with a feedback monitor.  

a) b)

c)
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6.3.6 Agonist activation 

To accurately measure KE iMVCt, agonist activation was assessed to estimate the 

degree of total activation of the KE. To do so, two rubber stimulation pads (size 

ranging from 70 x 90 to 180 x 100 mm; Uni-Patch, MN, USA) were placed proximally 

and distally along the transverse plane of the dominant femur. A counter weight was 

fixed to the dynamometer to minimise the compliance of the device. While in a 

relaxed state, a percutaneous singlet electrical stimulus (DS7, Digitimer stimulator, 

Welwyn, Garden City, UK) was passed through the KE at increasing increments (~50 

mV) and regular intervals (~20 seconds) until a plateau of twitch torque was 

measured. A supramaximal doublet stimulus was subsequently applied to the 

participant’s KE (interstimulus gap 10 µs and pulse width 50 µs) during KE iMVC. 

Doublet stimulus has been shown to improve the signal-noise ratio in the assessment 

of central activation (Belanger and McComas, 1981; Kent-Braun and Ng, 1999). A 

second doublet was applied approximately 5 seconds after the first stimulus when 

the muscles were fully relaxed, termed the potentiated doublet (Behm et al., 2001). 

Agonist activation was calculated using the following equation:  

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	6.2:	𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	(%) 	= 	100	 ∙ K1	– M	𝑡	 − 	𝑖𝑀𝑉𝐶t	𝑇	 QR 

 

Where; t is the interpolated doublet amplitude of the twitch torque, iMVCt is the 

isometric maximal voluntary contraction torque and T is the potentiated doublet 

amplitude (Behm et al., 2001). 
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6.3.7 Measurement of coactivation  

Co-activation of the KF was measured in all participants during a KE iMVC, and 

subsequent KF iMVCt produced at the angle at which peak KE iMVCt was measured. 

In order to determine coactivation of the KF, surface EMG was recorded over the 

biceps femoris (BF) as it is the largest of the KF group, and is representative of the KF 

group as a whole (Kellis and Unnithan, 1999). Furthermore, surface EMG was 

deemed adequate despite the adiposity levels in the group with Achondroplasia, as 

a linear relationship is observed in agonist and antagonist EMG between groups of 

differing adiposity (De Vito et al., 2003). Boundaries of the BF were determined using 

ultrasonography (Technos MXP Biosound Esaote) to ensure consistent placement of 

EMG electrodes over the KF. When established two pre-gelled, unipolar, 10mm, Ag-

AgCl percutaneous electromyography (EMG) electrodes (Ambu Neuroline 720, 

Baltorpbakken, Denmark) were placed distally at ~1/3 of muscle length, to avoid the 

motor unit of the BF, and ~2 mm apart along the mid-sagittal plane of the muscle 

(NORAXON, Arizona, USA). A third electrode was placed on the lateral epicondyle of 

the same femur as a reference (see Figure 5.1 in Chapter 5 for an example of the 

experimental set up). Prior to the placement of the electrodes, areas of the skin were 

shaved, then cleaned using an alcoholic wipe to minimise skin impedance and hence 

improve the EMG signal. Raw EMG data were recorded at 2000 Hz, with a high and 

low band-pass filter set at 10 and 500 Hz respectively, and a notch set at 50 Hz. The 

integral of the root mean square was recorded 0.5 seconds either side of the KE and 

KF iMVCt to quantify the level of KF muscle coactivation. Based on a linear 

relationship occurring between torque and EMG activity (Maganaris et al., 1998), KF 
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torque during KE iMVC was derived by converting the percentage activation of KF 

EMG during KE iMVC to KF EMG during KF iMVC.  

 

	𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	6.3:	𝐾𝐹𝜏	 = KU(𝐾𝐸	 ÷ 	𝐾𝐹) 	 ∙ 	100W	100 R ∙ 	𝐾𝐹	𝑖𝑀𝑉𝐶t 

 

Where KFt is the KF torque during KE (N×m), KE is the agonist EMG (mV) recorded of 

the KE during KE iMVC, KF is the antagonist EMG (mV) recorded of the KE during KE 

iMVC and KF iMVCt is the torque (N×m) observed during KF iMVC.  

 

The measurement of agonist and antagonist muscle activation are required for the 

accurate quantification of net KE iMVCt production, both of which are used in the 

calculation of specific force (Maganaris et al., 1998; Stebbings et al., 2014) . 

Therefore, net KE iMVCt was given as the sum of KE iMVCt and KFt while a ratio of 

KF iMVCt and KE iMVCt was calculated to describe a balance of quadriceps to 

hamstring strength. 

 

6.3.8 Moment arm  

A dual energy X-ray absorptiometry (DEXA) scanner (Hologic Discovery, Vertec 

Scientific Ltd, UK) was used to obtain moment arm length of the patellar tendon at 

an knee flexion angle of 90° (Erskine et al., 2014). These methods are described in 

section 5.3.2.7 and also presented as an experimental set up in Figure 5.4 of Chapter 

5. 
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6.3.8 Patella tendon force 

FPT was calculated by dividing net KE iMVC torque by the patella moment arm length 

(m). 

 

6.3.9 Stress and strain 

Tendon strain was the ratio of excursion to resting patella tendon length (%) while 

tendon stress was calculated by dividing FPT by CSAPT at mid-tendon length (MPa) 

(Maganaris and Paul, 2000b; Reeves et al., 2003a; Maganaris et al., 2006; Onambélé 

et al., 2007; Seynnes et al., 2009; O’Brien et al., 2010b).  

 

6.3.10 Tendon stiffness 

Patella tendon force-elongation relationships were fitted with second order 

polynomial functions forced through zero. Instantaneous patella tendon stiffness 

values were then calculated at 10% intervals of KE iMVC force (from 10-100%), from 

the gradient of tangential lines along the force-elongation curve (Onambélé et al., 

2007). 

 

6.3.11 Young’s modulus 

Instantaneous Young’s modulus values were calculated as: 

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	6.4:	𝑌𝑜𝑢𝑛𝑔′𝑠	𝑀𝑜𝑑𝑢𝑙𝑢𝑠	 = 	𝐾	 ×	M 𝐿klu𝐶𝑆𝐴klQ 
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Where K is the calculated stiffness, LPTi is the patella tendon length at each 10% 

tangential calculation of FPT and CSAPT is the cross-sectional area of the patella 

tendon at 50% of resting length. 

 

6.3.12 Standardised measures of tensile properties 

With large discrepancies in maximal FPT expected between groups (Chapter 5), the 

tensile properties of the patella tendon were calculated at the lowest FPT attained by 

the weakest participant with Achondroplasia. Patella stress, strain and Young’s 

Modulus are then presented at this common force level (1756 N) achieved by all 

participants consistent with previous work (Onambélé et al., 2007; Burgess et al., 

2009; Hicks et al., 2017). 

 

6.3.12 Statistical analysis 

All data were collated onto a personal computer (MacBook Pro, California) and 

analysed using SPSS (v22.0, IBM). Data were assumed to be parametric following 

Shapiro-Wilk and Levene’s tests. Repeated measures ANOVA with between group 

effects was conducted on the CSAPT and VL architecture. Between group comparisons 

for all measured variables at 10% intervals of iMVC were conducted using 

independent t-tests. Intraclass correlations (ICC) with a one-way random effects 

model and CV was used for reliability of KE iMVCt between proximal and distal effort 

and between post scan digitisation of CSAPT and patella tendon elongation. Where 

data violated parametric assumptions, a Mann Whitney-U was performed. Alpha was 

set at ≤ 0.05 while all results are reported as means (SD). 
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6.4 Results 

6.4.1 Anthropometric measures and reliability measures 

The description of participants’ anthropometrics are given in Table 2.1 of Chapter 2. 

Reliability of KE iMVCt between proximal and distal efforts were strong (group with 

Achondroplasia: ICC = 0.968, CV = 3.2%, P < 0.001; controls: ICC = 0.932, CV = 3.4%, 

P < 0.001) as were the measures of CSAPT (ICC = 0.965 – 0.998, CV 1.3 – 4.4% for all 

measures in both groups, P < 0.001) and patella tendon elongation (ICC = 0.940 – 

0.982, CV 1.5 – 3.0% for all measures in both groups, P < 0.001).  

 

6.4.2 Architectural properties of the patella tendon and vastus lateralis at rest  

The group with Achondroplasia had a 32% smaller resting patella tendon length (P < 

0.001) and a 41% smaller VL than controls (P < 0.001, Table 6.1). ANOVA showed an 

effect in CSAPT between groups (P = 0.004), but no interaction effect was found (P = 

0.868), nor any effect in CSAPT between each measured interval within groups (P = 

0.051). The group with Achondroplasia had a smaller CSAPT at 25% (P = 0.013), 50% 

(P = 0.003) and 75% (P = 0.010) compared to controls (Table 6.1). Patella tendon 

volume was 48% less in the group with Achondroplasia compared to controls (P < 

0.001). There was no difference between groups’ moment arm length (P = 0.989, 

Table 6.1). The group with Achondroplasia did have a 15% longer patella tendon 

length relative to VL length (P = 0.001) and a 42% greater moment arm length to 

femur ratio, compared to controls (P < 0.001, Table 6.1). Whereas there was no 

difference in the ratio of 50% CSAPT to patella tendon length between groups (P = 

0.102, Table 6.1).  
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6.4.3 KE and KF iMVCt 

The group with Achondroplasia produced 63% less KE iMVCt than controls (P < 0.001, 

Table 6.2). KF iMVCt was 82% lower in the group with Achondroplasia compared to 

controls (P < 0.001, Table 6.2). The ratio of KE to KF iMVCt was significantly higher in 

the group with Achondroplasia compared to controls (P < 0.001, Table 6.2). The ratio 

between KE iMVCt and VL length was 39% greater in the group with Achondroplasia 

compared to controls (P < 0.001, Table 6.2). 
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Table 6.1: Morphological properties of the patella tendon, vastus lateralis and 

patella tendon moment arm during rest in adults with Achondroplasia and 

control. Values displayed as mean (SD). 

    Achondroplasia  Control 

PT Length (mm)   37.6 (4.3) * 55.2 (5.8) 

VL Length (cm)  19.8 (1.2) * 33.6 (1.7) 

PT Length:VL length (%)   19.1 (2.3) * 16.2 (1.7) 

25% CSAPT (mm2)   81.6 (8.7) † 104.1 (25.4) 

50% CSAPT (mm2)   86.9 (13.8) ‡ 110.3 (19.6) 

75% CSAPT (mm2)   79.8 (15.5) † 105.1 (25.7) 

50% CSAPT:PT Length (%)  0.45 (0.11)  0.51 (0.08) 

PT Volume (mm3)   82.8 (11.4) * 106.5 (22.2) 

VL Fascicle Length:VL Length (%)  0.48 (0.13) * 0.31 (0.04) 

Moment Arm (mm)   37.6 (4.3)  37.6 (2.1) 

Moment arm:Femur length (%)   19.1 (2.8) * 11.1 (0.8) 

PT: Patella Tendon; VL, Vastus Lateralis; CSAPT: patella tendon cross sectional 
area. † P < 0.05, ‡ P < 0.01, * P ≤ 0.001. 

 

 

 

 

 

 

 

 

 

 

  

Table 6.2: Activation and force characteristics of the adult VL in 

adults with Achondroplasia and controls. Values presented as 

mean (SD). 

    Achondroplasia  Control 

KE iMVCt (N·m)   92.8 (5) * 260.1 (9.5) 

KF iMVCt (N·m)   19.0 (7.2) * 105.0 (19.2) 

KE iMVCt:VL Length  0.20 (0.04) * 0.13 (0.02) 

Activation (%) †   83.9 (13.9)  92 (5.9) 

Coactivation (%) †   42.6 (20) * 12.6 (5.3) 

Net KE iMVCt (N·m)   100.1 (21.7) * 273.7 (37.9) 

KE, knee extensors; KF, knee flexors; iMVCt, isometric maximal 
voluntary contraction torque; VL, vastus lateralis; † Mann 
Whitney-U; * P ≤ 0.001. 
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6.4.4 Activation and coactivation 

There was no difference in maximal KE activation between the groups (P = 0.125), 

but the group with Achondroplasia had 70% greater coactivation of the BF during KE 

iMVC compared to controls (P < 0.001, Table 6.2). 

 

6.4.5 Net iMVCt 

Both groups increased KE iMVCt by ~6% in both groups when corrected for BF 

coactivation (P < 0.001). The net KE iMVCt produced by the VL was 63% less in the 

group with Achondroplasia compared to controls (P < 0.001, Table 6.2).  

 

6.4.6 Muscle contractile properties 

There was no difference in VL pennation angle (P = 0.105) or fascicle length (P = 

0.199) at rest between groups. From rest to iMVC, the fascicles of the group with 

Achondroplasia shortened 28% more (P = 0.012) and increased in pennation angle by 

25% compared to controls (P = 0.029, Figure 6.2 and Figure 6.5). The group with 

Achondroplasia had a 36% longer fascicle length relative to VL length than controls 

(P < 0.001, Table 6.1).  

 

6.4.7 Patella tendon force-elongation relationship 

The group with Achondroplasia produced 64.3% less maximal FPT than controls (P < 

0.001) and an average of 63.4% less FPT at each 10% interval (Figure 6.6a and Table 

6.3). Tendon elongation was 21.5% less at KE iMVC in the group with Achondroplasia 
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compared to controls (P < 0.001) with an average 15% less elongation at each 10% 

interval (each 10% interval: P < 0.01, Figure 6.6a and Table 6.3). 

 

6.4.8 Tendon stress-strain 

Patella tendon strain was similar in the group with Achondroplasia and controls at KE 

iMVC and at each 10% interval, with maximal strain being 13.0 (4.1%) and 12.6 (3.3%) 

for the groups, respectively (P > 0.05, Figure 6.6b and Table 3). However, for each 

corresponding interval of strain, stress was on average 54.5% lower in the group with 

Achondroplasia at each 10% interval compared to controls (each 10% interval: P < 

0.001) with the maximal stress being 52.6% lower (P < 0.001, Figure 6.6b and Table 

6.3). 

 

6.4.9 Tendon stiffness 

Patella tendon stiffness was on average 51.1% lower through the 10-90% intervals of 

KE iMVC in the group with Achondroplasia compared to controls (each 10% interval: 

P < 0.01). The maximal patella tendon stiffness of the group with Achondroplasia was 

47.3% more compliant than controls (P < 0.001, Table 6.3).  

 

6.4.10 Young’s modulus 

Young’s Modulus was on average 53.8% lower in the group with Achondroplasia at 

each 10% of KE iMVC compared to controls (each 10% interval: P < 0.001, Table 6.3 
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and Figure 6.6c) and was 50.7% lower at KE iMVC (P < 0.001, Table 6.3 and Figure 

6.6c). 
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6.4.11 Standardised tendon properties 

With such large discrepancies in maximal FPT between groups being observed, the 

lowest FPT attained by the weakest participant with Achondroplasia (1765 N) was 

used as a comparison between the two groups (Table 6.4). As was with maximal and 

10% intervals of FPT, similar differences persisted when standardised. Stress (21.5%, 

P = 0.001) and strain (77.7%, P < 0.001) were higher in the group with 

Achondroplasia, while stiffness (11.7%, P < 0.001) and Young’s Modulus (11.1%, P = 

0.041) were lower compared to controls (Table 6.4). 

 

 

 

 

 

 

 

  

Table 6.4: Elastic properties of the patella tendon at a 

standardised force (1756 N) in adults with Achondroplasia and 

controls. Values displayed as mean (SD). 

    Achondroplasia  Control 

Stress (MPa)   20.9 (3.2) * 16.4 (2.8) 

Strain (%)   11.2 (3.8) * 2.5 (2.0) 

Stiffness (N·mm-1)   637 (39) * 721 (10) 

Young's Modulus (GPa)   0.32 (0.06) * 0.36 (0.06) 

* P ≤ 0.001.     
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6.5 Discussion 

The aim of this study was to measure and compared the in vivo morphological and 

material properties of patella tendon during KE iMVC in adults with Achondroplasia 

and controls. The patella tendons of individuals with Achondroplasia was smaller in 

CSA and volume but were disproportionate in length compared to controls. The main 

finding however, was that despite accounting for patella tendon morphology and 

mechanical properties, the Young’s Modulus of the patella tendon was lower in the 

group with Achondroplasia than controls’ leading to a more compliant patella 

tendon. 

 

6.5.1 Patella tendon morphology, force, strain, stress and stiffness 

The morphological properties of the patella tendon from the present control group 

were similar to those previously observed (Onambélé et al., 2007; Seynnes et al., 

2009; O’Brien et al., 2010b; O’Brien et al., 2010d). Many agree that an increased ratio 

of tendon CSA to tendon length increases tendon stiffness (Kubo et al., 2001b; 

Reeves, 2006; O’Brien et al., 2010b). While this ratio was higher in the patella tendon 

of the group with Achondroplasia compared to controls, a higher tendon stiffness 

was not observed. A shorter femur length of the individuals with Achondroplasia 

compared to controls (measured here as VL length) would explain the difference in 

groups’ patella tendon length. A shorter femur would suggest a shorter muscle 

tendon unit, which is observed elsewhere in groups of shorter statures (Morse et al., 

2008; O’Brien et al., 2010b; O’Brien et al., 2010d). However, the shorter femur 

observed in the group with Achondroplasia does not explain the their relatively 
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longer patella tendon length compared to controls. In individuals with 

Achondroplasia, more flexion of the knee is observed when at rest compared to 

controls (Akyol et al., 2015). This more flexed joint position may deform the patella 

tendon over time leading to a creep effect. However, no longitudinal measures of the 

group’s patella tendon length have been made. 

 

With no in vitro tendon properties identified in any population with Achondroplasia, 

explanations as to why their absolute measures of CSAPT are lower and relative 

measures (CSAPT to patella tendon length) are higher compared to controls are 

speculative. The measurement of CSAPT using ultrasound is regarded by some, 

though very few, as unreliable (Ekizos et al., 2013). However, previous reports, and 

in this Chapter, show high ICCs for CSAPT with a typical error of <1.5 mm2 (Reeves et 

al., 2003a; Gellhorn and Carlson, 2013). Using the maximal CSAPT difference from 

Reeves et al., the ranges of calculated stress measured here would be 3.6 and 2.8% 

different for the group with Achondroplasia and controls, respectively. Even the 

lower ICCs presented by Ekizos et al. would present stress values ±20% of the average 

values for the groups included in this Chapter. If the measurement of CSAPT was 

indeed miscalculated in this Chapter, it would have to have been ~40% under- and 

over-predicted for the group with Achondroplasia and controls, respectively, for 

there to be the same stress and therefore the same stiffness values.  

 

The use of ultrasound is a good method of attaining CSAPT without the use and 

availability of a magnetic resonance imaging (MRI) scanner, which is considerably less 

accessible for most researchers. Despite the conflicting arguments in the reliability 
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of CSAPT calculation, the patella tendon stress and Young’s Modulus calculated here 

have a large amount of face validity. These differences in patella tendon stress and 

Young’s Modulus between the observed groups are undoubtedly due to the large 

differences in relative (CSAPT to patella tendon length) and absolute CSAPT between 

the groups. Importantly though, this is backed by the potential respective under- and 

over-predictions of the group with Achondroplasia and controls’ CSAPT required to 

attain similar stress values. Therefore, the smaller absolute CSAPT seen in the group 

with Achondroplasia would most likely be a result of the scaling of leg length and 

muscle size. The higher relative CSAPT in the group with Achondroplasia is most 

probably ‘pseudohypertrophy’ of the tendon fibrils and is likely to be due to intrinsic 

factors of the tendon, which are discussed later. 

 

The values of patella tendon stress in the control group were similar to those 

measured previously (Maganaris, 2002; Onambélé et al., 2007) with values 

approaching the maximal tensile strength of human patella tendons (0.65 GPa, 

(Johnson et al., 1994). The group with Achondroplasia produced 53% less stress at 

iMVC than controls with no difference in agonist activation was observed between 

groups (84 and 92% for Achondroplasia and controls respectively). This suggests that 

the groups’ strain and stress values were close to their maximal. With similar in vivo 

values of maximal strain being observed in other groups (Maganaris, 2002; 

Onambélé et al., 2007), it would be assumed that the rupture point of the patella 

tendon would occur at a reduced absolute force in individuals with Achondroplasia 

compared to controls. Indeed, the lower Young’s Modulus of individuals with 

Achondroplasia infers a weaker patella tendon at all 10% increments of iMVC, but 
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importantly at a commonly attained force value (1756 N). Therefore, the more 

compliant and probably lower tensile strength in of the patella tendon in individuals 

with Achondroplasia is likely due to differences in intrinsic properties of the tendon.  

 

6.5.2 Young’s modulus 

Given the size of the difference in the patella tendon’s Young’s Modulus (here 

defined as tendon compliance) between individuals with Achondroplasia and 

controls found in this Chapter, there appears to be no conclusive evidence to suggest 

why such a large difference exists. There are however a number of speculative but 

reasonable explanations as to why the patella tendons if individuals with 

Achondroplasia would be more compliant. Whilst this list is not exhaustive, the 

mutation which causes Achondroplasia (FGFR3), the tendon extracellular matrix 

(ECM), physical activity levels, hormonal differences and body morphology of the 

group may all contribute to their more compliant patella tendon. 

 

The most likely contributor to the more compliant patella tendon in individuals with 

Achondroplasia is the mutation of the FGFR3, which is linked unequivocally to bone 

plate formation and growth (Deng et al., 1996; Horton et al., 2007; Superti-Furga and 

Unger, 2007; Krakow and Rimoin, 2010). FGFR3 is part of a family of fibroblasts which 

are all essential for the development, repair and turnover of collagen (Benjamin and 

Ralphs, 2000). In FGFR3 mutated mice, Type II collagen in the fibrocartilage is shown 

to be negatively affected (Liang et al., 2009). Fibrocartilage extends from bone to 

tendon (Benjamin et al., 2002) and if the assumption that fibrocartilage is similarly 
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affected by FGFR3 in humans, the compliance of the fibrocartilage may be reduced. 

However, with the human tendon predominantly made from Type I and III collagen, 

any evidence that the presented theory exists would not account for the large 

difference in patella tendon compliance between groups observed in this Chapter. 

Despite this, the evidence found in FGFR3 mutated mice may show that other 

collagen types may in turn be affected in the tendon. Whilst this is speculative, the 

FGFR3 is a collagen affecting mutation and with there being no in vitro data available 

from the tendons of individuals with Achondroplasia, any evidence contradicting this 

theory is yet to be presented.   

 

Assuming that FGFR3 does not substantially affect the tendon growth or formation 

in individuals with Achondroplasia (if at all), the way in which the ECM of the collagen 

fibres are arranged within the tendon would be a likely cause of their more compliant 

patella tendon compared to controls. Studies have shown that a more compact 

orientation of the tendon ECM aids in the transmitted of force from the muscle to 

bone (Lieber et al., 2003). The way in which the ECM is orientated is dependent on 

the signalling pathways, which are activated by force development and activation of 

the muscle-tendon unit (J. H. Wang, 2006). The group with Achondroplasia included 

here were self-reported active adults who regularly partook in sporting activities 

such as badminton and basketball (Section 2.3 of Chapter 2). Not only are ground 

reaction forces higher in these activities compared to general physical activity, such 

as walking, individuals with Achondroplasia have shorter legs than controls (Chapter 

2). Shorter legs increase stride frequency compared to longer legs when walking and 

running at set speeds (Vaughan and O’Malley, 2005). Furthermore, due to the 
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disproportionate limb length of individuals with Achondroplasia, their body mass is 

also disproportionate compared to controls; shown in this thesis (Chapter 2) and by 

others’ measures of BMI (Horton et al., 1978a; Hecht et al., 1988; Owen et al., 1990; 

Hoover-Fong et al., 2007). A greater upper-body mass combined with a shorter stride 

length and increased stride frequency, during activities such as walking and running, 

will lead to a higher ground reaction force and therefore higher muscle activation 

during contraction of the lower limb muscles compared to controls. These factors are 

likely to stimulate cell signalling of pathways of the ECM in individuals with 

Achondroplasia, but there are no in vitro data in the population’s tendons to support 

this suggestion.  

 

It has been shown that muscle fibres require force whilst under strain to stimulate 

adaptation (McMahon et al., 2013; McMahon et al., 2014), while tendons can require 

as little as 4% strain to achieve microscopic failure and further adaptation (Butler et 

al., 1978). For the group with Achondroplasia, during activities such as running, it 

may be that the quadriceps are not under sufficient strain during the loading phase 

of gait for the patella tendon to be at a threshold by which the appropriate cell 

signalling occurs which in turn leads to tendon adaptation, but this is yet to be 

observed empirically. Some gait analysis has been conducted in groups with 

Achondroplasia (Egginton et al., 2006; Inan et al., 2006; van der Meulen et al., 2008), 

but little data are available in adults with the condition. In addition, no kinetic 

analysis of force development or in vivo tendon excursion during gait is available in 

individuals with Achondroplasia which would have helped to explain some of the 

findings observed here. 
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The water content within the human tendon is reported to be between 55-70% and 

is used for spacing of fibrils and lubricant (Kjær 2004). Laaksonen et al. (2003) 

describes obese people having greater total-body water content compared to lean 

individuals. Chapter 2 identified the group with Achondroplasia as having higher 

adipose fat content compared to controls, a find backed by many (Horton et al., 

1978a; Hecht et al., 1988; Owen et al., 1990; Hoover-Fong et al., 2007). A greater 

water content in the body is therefore likely to be observed in individuals with 

Achondroplasia. In animal models, a higher water content of the body changes the 

orientation of the ECM and increases tendon compliance (Birch, 2007). Here, the 

possible higher water content of individuals with Achondroplasia may be observed 

in the patella tendon; here as a pseudohypertrophy of CSAPT. Furthermore, lower 

levels of oestrogen receptor-a are linked to a higher fat mass in mice (Lindberg et al., 

2001). A higher availability of oestrogen inhibits the growth and turnover of collagen 

fibres in females (Henneman, 1968; B. F. Miller et al., 2007; Hansen et al., 2009), 

leading to a more compliant tendon in the same population (Kubo et al., 2001b; 

Onambélé et al., 2007). Similar levels of oestrogen are observed in obese males to 

that of lean females (Gates et al., 2012). Combining the findings of higher adiposity 

in individuals with Achondroplasia (Chapter 2) with the aforementioned findings in 

bodies with higher fat content, it could be suggested that individuals with 

Achondroplasia do indeed have greater oestrogen levels, which are hindering 

collagen turnover and negatively affecting tendon stiffness. Both water content and 

oestrogen levels are speculative in the current group with Achondroplasia though. 

More work involving the intrinsic properties of the patella tendon using in vivo and 

in vitro methods is needed in this group to support the theories presented above. 
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6.5.3 Biomechanical implications  

To the author’s knowledge, the data presented in this Chapter is the first to identify 

the in vivo fascicle shortening of muscles during contraction in individuals with 

Achondroplasia (Figures 6.2 and 6.5). Results show that fascicle shorten more while 

pennation angle increases more in individuals with Achondroplasia compared to 

controls. This finding is not only novel, but also is partially explained by the patella 

tendon compliance of the group. Where a more compliant tendon exists, a left-ward 

shift in the length tension relationship is observed in the muscle fascicles (Reeves, 

2006). This results in more fascicle shortening and increased pennation angle during 

muscle contraction, in turn lowering effective force production. To account for the 

latter, either muscles would have to activate more to achieve the required force level 

to complete a submaximal task, or a structure may damage as a result of an inactive 

muscle. At submaximal tasks, individuals with Achondroplasia are likely to have 

differences in postural balance greater risk of tendon compared to controls. Both of 

which are observed in other populations with compliant tendons  (Onambélé et al., 

2006; Onambélé et al., 2008).  

 

The results of this Chapter suggest that individuals with Achondroplasia transfer of 

force from muscle to bone less effectively that controls. This would have implications 

for cyclic activities such as walking and running, due to a likely increased hysteresis 

loop in the tendon (Maganaris and Paul, 2000a). It has been shown that stride 

frequency is greater in children with Achondroplasia at self-selected walking speeds 

(Inan et al., 2006). Assuming this finding is consistent within adults with 

Achondroplasia, more muscle activation per stride would be required to maintain a 



 199 

set speed compared to controls, which would incur a higher energetic cost (Saunders 

et al., 2004; Arampatzis et al., 2006; Fletcher et al., 2010), which is observed in 

Chapter 4. While the higher tendon compliance of individuals with Achondroplasia 

may play a role in their higher energetic cost of walking and running compared to 

controls, it is likely that this only accounts for a small proportion of the overall 

difference in energy cost.  

 

The combination of a higher relative mass of the torso and lower relative mass of the 

legs (Chapter 2), lower relative force production (Chapter 5) and higher tendon 

compliance (current Chapter) in adults with Achondroplasia is likely to affect the 

general gait pattern compared to controls. This in turn is likely to have a negative 

impact on the energy expenditure during gait of individuals with Achondroplasia (i.e. 

a higher metabolic cost). While there are kinematic data available to describe the 

gait of young individuals and leg lengthened adults with Achondroplasia (Rethlefsen 

and Tolo, 1998; Egginton et al., 2006; Inan et al., 2006; van der Meulen et al., 2008), 

there does not appear to be a detailed kinematic analysis of gait in adults with 

Achondroplasia.  

 

6.6 Conclusion 

This study aimed to examine the in vivo material properties of the patella tendon 

during a ramped MVC in adults with Achondroplasia and controls. The main finding 

is that individuals with Achondroplasia have a more compliant patella tendon than 

controls. In addition, at both absolute (iMVC) and standardised force (1756 N) levels 
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of stress, stiffness and Young’s modulus are lower in the group with Achondroplasia 

compared to controls suggesting intrinsic differences between groups.  
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Chapter 7: The kinematic analysis of walking and 

running in adults with Achondroplasia 

Part 1: Introduction and methods 

Part 2: Walking results 

Part 3: Running results 

Part 4: General kinematic discussion 

Publication: Sims, D. T., Onambélé-Pearson, G. L., Burden, A., Payton, C., & Morse, C. 
I. (2018) ‘A quantitative description of self-selected walking in adults with 
Achondroplasia using the gait profile score.’ Gait & Posture, In Press. 
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7.1 Abstract 

This Chapter aimed to describe the spatio-temporal, discrete joint kinematics and 

centre of mass (CoM) kinematics of gait during a number of incremental walking and 

running speeds in individuals with Achondroplasia and compare them to age-

matched controls. Three-dimensional motion analysis (VICON, Plug-in-gait) of gait 

was conducted over ground at a self-selected walking speed (Achondroplasia 1.02 

(0.13) m×s-1; controls 1.44 (0.14) m×s-1), 6-fixed walking (0.56 - 1.94 m·s-1, step 0.28 

m·s-1) and 6-fixed running speeds (1.67 – 3.33 m·s-1, step 0.28 m·s-1). Spatio-temporal 

measures of one stride (heel contact-to-heel contact) and discrete joint kinematics 

for the pelvis, hip, knee and ankle in all three anatomical planes were presented in, 

and compared between, both groups. The Gait Profile Score (GPS) was the calculated 

from 15 related gait kinematics to calculate a global joint kinematic score for the gait 

of individuals with Achondroplasia to be compared to controls. Local minima and 

maxima of the vertical and medio-lateral CoM translation were presented absolutely, 

relative to stature and relative to the height of its position at heel contact for both 

groups. Two-way ANOVAs with between effects were used to determine differences 

between groups’ gait kinematics. The group with Achondroplasia had a shorter stride 

length and higher frequency than controls at all walking and running speeds. There 

were numerous differences in discrete joint kinematics between groups, which led 

to the group with Achondroplasia presenting as more ‘flexed’ than controls during 

walking and running. The GPS of the group with Achondroplasia was higher than the 

controls at all walking speeds, but differences lessened between groups when 

running. The group with Achondroplasia had less relative vertical translation of the 
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CoM, but more medio lateral translation than the control group during walking and 

running. The data from this Chapter suggest that gait of individuals with 

Achondroplasia is quantifiably different to controls. The difference in gait  between 

groups may exist due to the body dimensions of the group with Achondroplasia 

requiring a more flexed position to void fall incidence.
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Part 1: Introduction and General Methods 
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7.2.p1 Introduction 

The previous Chapters in this thesis have described and compared total-body and 

segmental anthropometry, maximal oxygen consumption (V̇O2max), submaximal 

oxygen consumption (V̇O2)  during incremental exercise and musculotendon 

properties during maximal voluntary contraction in adult males with Achondroplasia 

to age matched average statured males (controls). One of the main findings thus far 

is that, despite incorporating body morphology and leg length, the metabolic cost (C) 

of adults with Achondroplasia during walking and running is higher compared to 

controls (i.e. more V̇O2 is required for a given distance, Chapter 4). Chapter 5 and 6 

identified that adults with Achondroplasia are both weaker and have a more 

compliant patella tendon than controls. These are both likely to contribute to the 

difference between groups’ C during gait (Saunders et al., 2004; Arampatzis et al., 

2006; Fletcher et al., 2010). It is probable that some of the difference in C between 

groups is also accounted for by an altered limb and centre of mass (CoM) movement 

during walking and running between groups. To the author’s knowledge though, 

kinematics of the CoM during gait in individuals with Achondroplasia has not been 

measured. 

 

Self-selected walking (SSW) appears coordinated and efficient in the healthy 

individual (Umberger and Martin, 2007), whereas in groups where musculoskeletal 

pathology exits, gait can be anecdotally and empirically different to controls (Baker 

et al., 2009). In such groups, differences in gait kinematics are explained by 

neurological impairment, muscle weakness, amputation or skeletal deformity (van 



 206 

den Hecke et al., 2007; Baker et al., 2009; Beynon et al., 2010; Baker et al., 2012; 

Zollinger et al., 2016; Weinert-Aplin et al., 2017). While individuals with 

Achondroplasia appear to be unaffected by such pathologies, their shorter legs 

(Chapter 2), differences in joint morphology (Akyol et al., 2015) and greater relative 

torso mass compared to controls is likely to affect their gait kinematics. To date there 

appear to be four data sets that describe kinematic variables of the pelvis, hip, knee 

and ankle of SSW gait in individuals with Achondroplasia, all of which show 

differences in joint kinematic patterns compared to controls (Rethlefsen and Tolo, 

1998; Egginton et al., 2006; Inan et al., 2006; van der Meulen et al., 2008). However, 

the groups with Achondroplasia included in these studies do not allow for an 

accurate gait description of adults with Achondroplasia who have not undergone 

limb lengthening surgery. Furthermore, due to the difference in body size and 

dimensions between groups, it would be appropriate to normalise gait parameters, 

through such methods as non-dimensional normalisation (NDN) (Hof, 1996). 

Including such measures would help explain the movement patterns of individuals 

with Achondroplasia further. 

 

With the large number of kinematic variables that are collected during gait, 

quantifying whether a person, or population, is different to another is difficult. 

Methods have been developed to describe a global gait score for clinical populations 

to enable comparison to control populations by incorporating a number of different 

kinematic variables. One such method is the Gait Profile Score (GPS); a lower GPS 

values represent a more comparable movement pattern to that of a control 

population over a complete stride (Baker et al., 2009). GPS has been used to compare 
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differences in gait between individuals with and without gait pathologies and has 

been conducted under various conditions (Baker et al., 2009; Beynon et al., 2010; 

Baker et al., 2012; Kark et al., 2012; Johansson et al., 2014; Schweizer et al., 2014). It 

is derived by summing 15 root mean square (RMS) differences in gait related 

kinematics during the gait cycle. GPS correlates well with clinical assessments (Baker 

et al., 2012), has high face validity (Beynon et al., 2010) and affords the ability to 

perform more powerful statistical analyses than other global gait difference scores, 

such as the Gait Deviation Index (Schwartz and Rozumalski, 2008). Calculation of GPS 

allows for inter- and intra-joint and plane comparisons within and between groups 

with different pathologies. This is useful to determine which are the predominant 

joints affecting gait differences and therefore aid in gait rehabilitation or gait 

improvement interventions. Descriptions of gait in populations with Achondroplasia 

are sparse, but do show individual joint differences compared to controls (Egginton 

et al., 2006; Inan et al., 2006; van der Meulen et al., 2008); these though are not 

inferentially compared as can be done using GPS.  

 

Accurate assessment of joint kinematics in turn allows for an estimation of the body’s 

CoM position, which is useful during gait analysis as it can allude to the mechanical 

work during locomotion (Cavagna and Kaneko, 1977). The amplitude of the CoM’s 

vertical movement is determined, somewhat, by leg length and so for individuals 

with Achondroplasia, the position of the CoM is likely to be lower than controls. 

While it may be closer to the floor, the vertical movement and displacements 

patterns are at present unknown. Such measures though would help with explaining 

some of the difference in C observed between groups in Chapter 4.  
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The aim of this chapter was to provide a kinematic analysis of gait in non-leg 

lengthened individuals with Achondroplasia over a range of speeds. The specific 

objectives of this chapter are to: 

1) analyse the gait of individuals with Achondroplasia over a range of walking 

speeds that match those used in Chapter 4 during submaximal V̇O2 analysis; 

2) present spatial and temporal gait kinematics and calculate GPS during walking 

and running in individuals with Achondroplasia; 

3) describe vertical CoM movements during walking and running in individuals 

with Achondroplasia; 

4) compare all variables to controls. 

 
 

7.3.p1 Method 

7.3.p1.1 Participants 

Ten adults with Achondroplasia and 17 age matched controls that were free from 

lower limb injury volunteered to participate in the study and are described in Table 

2.1 in Chapter 2. 

 

7.3.p1.2 Biomechanical measures 

Three-dimensional motion analysis hardware (VICON Motion Systems, Oxford, UK, 

100 Hz) was used to determine gait parameters during SSW. The Plug-in-Gait model 

consisting of 39 markers was used, with the placement consistent with the Plug-in-
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Gait model provided by VICON (see Figure 7.1a and Figure 2A.1 in Appendix 2). 

Participants wore only shorts or tight-fitting clothing after anthropometric measures 

described by the user manual were taken and entered into the software (Nexus 2.5, 

Bodybuilder, ‘plug-in-gait model’, VICON Motion Systems, Oxford). Fourteen VICON 

cameras (VICON MX T160, 2 Megapixel) were positioned on scaffolding which gave a 

~170 m3 viewing area and calibration was completed following the manufacturer’s 

guidelines, such that the residual of measurement was < 0.01 mm. The Plug-in-Gait 

model predicts the position of joint centres from the available marker set and 

anthropometric measures with the equations described by Davis et al. (1991) used 

to calculate hip joint centres in both groups; the error of which is 6-10 mm in the 

anterior direction, 5-13 mm in the distal direction and 6-9 mm in the medial direction 

for controls (Harrington et al., 2007; Yousefi et al., 2014). 

 

7.3.p1.3 Walking and running trials 

Participants were asked to walk through the laboratory along a straight line (~10 m) 

to ensure movement was along the sagittal plane to the predefined 0,0,0 coordinates 

(Figure 7.1b). Two timing gates (1 m apart) were used to obtain walking speed. The 

same fixed walking speeds (0.56 - 1.94 m·s-1, step 0.28 m·s-1) and running (1.67 – 3.33 

m·s-1, step 0.28 m·s-1) used in Chapter 4 were included (Chapter 4, Section 4.4.3). In 

addition, the same SSW speeds measured during V̇O2 assessment was also used. All 

participants were required to be within ±5% of each speed; trials that were outside 

these limits were discarded. Each participant completed each respective trial until at 

least three acceptable trials were recorded. For all trials, kinematic data were 
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recorded (100 Hz) when each participant were first and last detected as a whole-

body by the software.  

 

 

Figure 7.1: a) Plug-in-Gait marker set being positioned on a participant with 

Achondroplasia, and b) the laboratory set up (timing gates out of view) during a 

walking trial of a participant with Achondroplasia (grey panels on the floor denote 

the centre of the viewing area, i.e. coordinates 0, 0, 0). 

 

7.3.p1.4 Spatial, temporal and kinematic calculations 

Leg length (m) of all participants was measured as the distance from the anterior iliac 

spine to the medial malleolus of the ankle while standing using a measuring tape. 

Stride length (m) and stride frequency (Hz) were attained by observing the left and 

right heel marker in relation to the sagittal plane and floor. Based on Hof’s NDN 

parameters of gait (Hof, 1996), stride length (stride length ÷ leg length) stride 

frequency (Equation 7.1) and speed (in the form of Froude’s number (Fr), Equation 

7.2) were calculated in both groups. Temporal events of heel contact and toe off for 

a) b)
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the left and right sides were calculated as a percentage of total stride time. The 

double support phase was calculated as the overlap period of left and right foot floor 

contact for walking, while flight phase during running was determined as the time 

spent in the air during the stride. Seven discrete measures of the pelvis (P 1-7), six of 

the knee (K 1-6), and nine discrete measures of the hip (H 1-9) and ankle (A 1-9) were 

analysed in the sagittal, frontal and transverse planes (see Table 7.1) based on the 

recommendations of Benedetti et al. (1998). Further to the discrete measures, the 

average difference in joint kinematics between groups’ pelvis, hip, knee and ankle 

position were determined over the entire stride for the sagittal plane only. 

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	7.1:	𝑁𝐷𝑁	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	 = 	 𝑆𝑡𝑟𝑖𝑑𝑒	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑦	(𝐻𝑧)%9.81	(𝑚 · 𝑠z<) 	÷ 	𝑙𝑒𝑔	𝑙𝑒𝑛𝑔𝑡ℎ	(𝑚) 
 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	7.2:	𝐹𝑟𝑜𝑢𝑑𝑒{𝑠	𝑁𝑢𝑚𝑏𝑒𝑟	 = 	 𝐺𝑎𝑖𝑡	𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦	(𝑚 · 𝑠z~)%𝑙𝑒𝑔	𝑙𝑒𝑛𝑔𝑡ℎ	(𝑚)	 · 	9.81	(𝑚 · 𝑠z<) 
 

7.3.p1.5 Centre of mass calculation 

The segment masses measured by dual x-ray absorptiometry given in Chapter 2 were 

used alongside the inertial properties described by Dempster (1955) to predict CoM 

of both groups. In brief, the body was divided into 15 segments with the CoM 

calculated using the three-dimensional coordinates from the VICON system and 

given as an individual X and Y coordinate for each time frame during the gait cycle 

(Equation 7.3 and 7.4). The vertical position of the CoM was identified as an absolute 

measure from the floor. Vertical displacement of the CoM was calculated from its 
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position at initial heel contact to the positions at the local minima and maxima 

through the gait cycle. The medio-lateral displacement of the CoM was determined 

as the distance between its local minima and maxima in the transverse plane. 

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	7.3:	𝐶𝑜𝑀� = ∑ 𝑚u ∙ 𝑥u�u�~𝑚�  

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	7.4: 𝐶𝑜𝑀� = ∑ 𝑚u ∙ 𝑦u�u�~𝑚�  

 

Where 𝐶𝑜𝑀� and 𝐶𝑜𝑀� are the respective horizontal (x) and vertical (y) coordinates 

of the CoM of the whole body, 𝑚u  is the mass of individual segments; 𝑥u  and 𝑦u  are 

the respective horizontal and vertical distances of the segments’ centre of mass from 

the origin; and, 𝑚� is the total-body mass of each participant. 
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7.3.p1.6 Gait profile score 

Based on the method proposed by Baker et al. (2009) and presented in Baker et al. 

(2012), 15 gait specific RMS differences, known as Gait Variable Scores (GVSs, units 

°) were calculated for each group. Specifically, GVSs were calculated for: pelvic tilt, 

obliquity and rotation; hip flexion/extension, abduction/adduction and 

internal/external rotation; knee flexion/extension; ankle plantar/dorsiflexion; foot 

progression; and, a total GVS for each leg (Equation 7.5, (Baker et al., 2012)). For the 

GVSs of the group with Achondroplasia, RMS differences were compared to the 

control mean, whereas the control group’s GVSs were compared to their own mean. 

GPS (units °) was then calculated as the sum of the RMS of each groups’ 15 GVSs, 

given in Equation 7.6 (Baker et al., 2012). A worked example of knee 

flexion/extension GVS and GPS of one participant with Achondroplasia is given in 

Tables A3.1 and A3.2 in appendix 3, respectively. 

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	7.5:	𝐺𝑉𝑆u = �1𝑇�(𝑥u,� − 𝑥̅u,����)<l
��~  

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	7.6: 𝐺𝑃𝑆 = 	�1𝑁�𝐺𝑉𝑆u<�
u�~  

 

Where 𝐺𝑉𝑆u  is the 𝑖th gait variable score for a specified joint, 𝑥u,� is each participant’s 

gait variable (Achondroplasia and control), 𝑖, calculated at a specific time point,	𝑡, 
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and 𝑥̅u,���� is the same variable averaged from the reference group (control only), 𝑇 is 

the number of data points the gait cycle is divided into.  

 

7.3.p1.7 Statistical analysis 

Raw data exported from the VICON system were exported to Microsoft Excel (2000) 

and time normalised to 100 data points using a cubic spline interpolation method 

(Microsoft Excel macro, 2000). Statistical analyses were conducted using SPSS (IBM, 

v24). For absolute and NDN spatio-temporal parameters, discrete joint kinematic 

measures, CoM movement and the mean difference in joint angles throughout the 

gait cycle, data were assumed parametric following normality tests (Shaprio-Wilk) 

and equal variance tests (Levene’s). To avoid the likelihood of Type I errors, a 

repeated measures ANOVA with a between group factor was used to identify 

between effects for all variables. Planned contrasts, in the form of independent t-

tests were used to compare the above variables between groups, with data being 

presented as mean (SD). 

 

For GPS related comparisons, a log-transformation of GVS was performed due to the 

skewed distribution of the data. To account for Type I errors, Mann Whitney-U tests 

were conducted to identify effects between groups’ individual GVSs and GPS. 

Wilcoxon tests were performed within each group to identify effects between left 

and right legs for each GVS, with data presented as median (interquartile range, IQR). 

Each GVS was inferentially compared between groups and presented graphically as 
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a collection of RMS differences known as the Movement Analysis Profile (MAP) 

(Baker et al., 2009).  

 

Lastly, the speed of each walking and running trial across the floor was compared to 

the treadmill-based speeds from Chapter 4 using a repeated measures ANOVA. Alpha 

was set to ≤ 0.05 for all tests. 
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Part 2: Walking results 

  



 

 218 

7.4.p2.1 Spatial-temporal 

7.4.p2.1.1 Gait speed 

There was no difference in either groups’ walking or running speed across the floor 

compared to those measured during V̇O2  assessment on a motorised treadmill 

(Chapter 4, P > 0.05). The group with Achondroplasia were 23% slower at SSW 

compared to controls (Achondroplasia, 1.02 (0.13) m×s-1; control 1.33 (0.14) m×s-1, P 

< 0.001). When presented as NDN Fr values, the group with Achondroplasia were 

quicker at every walking speed than controls (P < 0.001) other than SSW where there 

was no difference between groups (P = 0.466, Table 7.2). 

 

7.4.p2.1.2 Stride length 

The group with Achondroplasia had, on average, a 25% shorter stride length across 

all speeds compared to controls (P < 0.001, Figure 7.2a). At SSW, the group with 

Achondroplasia had a 30% shorter stride length than controls (P < 0.001, Figure 7.2a). 

When stride length was presented as NDN values (normalising for leg length), the 

group with Achondroplasia had a longer stride than controls at every walking speed 

(P < 0.05, Table 7.2). 

 

7.4.p2.1.3 Stride frequency 

The group with Achondroplasia had, on average, a 23% higher stride frequency 

across all speeds compared to controls (P < 0.001, Figure 7.2b), indicating a 13% 

greater stride frequency at SSW compared to controls (P < 0.001, Figure 7.2b). When 



 

 219 

presented as NDN values, there was no difference in stride frequency between 

groups (P > 0.05), other than SSW where the group with Achondroplasia had a lower 

stride frequency than controls (P < 0.001, Table 7.2). 

 

7.4.p2.1.4 Temporal measures 

The group with Achondroplasia had a shorter stride time than controls at every 

walking speed (P < 0.001, Figure 7.2c). When temporal events were normalised to 

stance time however, there were no between group differences in time to left toe 

off (P = 0.612) or right heel contact at any speed (P = 0.418, Table 7.2).  

 

7.4.p2.2 Discrete kinematic variables 

7.4.p2.2.1 Pelvis 

Significant effects were observed in all pelvis measures (P1-3 and P6-7, P < 0.05) 

other than P4 and P5 (P > 0.05, Table A4.1 in Appendix 4). The group with 

Achondroplasia exhibited a greater anterior pelvic tilt at heel contact (P1) within the 

stance phase (P2) and a greater peak anterior pelvic tilt within the swing phase (P3) 

compared to controls at all walking speeds (P < 0.001, Figure 7.3 and Table A4.1 in 

Appendix 4). A greater peak internal rotation of the pelvis during the stride (P6) at 

walking speeds 1.11 to 1.96 m·s-1 was observed in the group with Achondroplasia 

compared to controls (P < 0.001, Figure 7.3 and Table A4.1 in Appendix 4). The group 

with Achondroplasia also had a greater peak external rotation of the pelvis during 

the stride (P7) compared to controls at walking speeds 1.11 to 1.96 m·s-1 (P < 0.001, 
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Figure 7.3 and Table A4.1 in Appendix 4). A significant effect was observed in the 

mean difference of the pelvis (P < 0.001) with the group with Achondroplasia being 

more anteriorly tilted throughout the stride at every walking speed compared to 

controls (P < 0.01, Table 7.3 and Table A4.1 in Appendix 4). 

 

7.4.p2.2.2 Hip 

There were no differences in any hip measure (H1-7 and H9, P > 0.05) other than the 

group with Achondroplasia being more internally rotated at heel contact than 

controls at every speed (P < 0.001, Figure 7.4 and Table A4.2 in Appendix 4). A 

significant effect was observed in the average mean difference of the hip (P = 0.014) 

with the group with Achondroplasia being more flexed throughout the stride at every 

walking speed compared to controls (P ≤ 0.05, Table 7.4 and Table A4.2 in Appendix 

4). 

 

7.4.p2.2.3 Knee 

A significant effect was found for K2-4 and K6-7 only (P < 0.05, Table A4.3 in Appendix 

4). The group with Achondroplasia had greater peak knee flexion during stance (K2) 

and greater knee flexion at toe off (K3) than controls for all walking speeds other 

than 1.67 m·s-1 (Figure 7.5 and Table A4.3 in Appendix 4). A greater peak knee flexion 

during swing (K4) was observed in the group with Achondroplasia compared to 

controls at all walking speeds (Figure 7.5 and Table A4.3 in Appendix 4). The group 

with Achondroplasia also had a greater peak varus knee position during stance at 

speeds 1.39 – 1.96 m·s-1 and SSW only, but had a lower peak varus position of the 
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knee during swing for all walking speeds compared to controls (Figure 7.5 and Table 

A4.3 in Appendix 4). A significant effect was also observed in the average mean 

difference of the knee (P < 0.001) with the group with Achondroplasia being more 

flexed throughout the stride at every walking speed compared to controls (P < 0.01, 

Table 7.3 and Table A4.3 in Appendix 4). 

 

7.4.p2.2.4 Ankle 

The group with Achondroplasia had less plantarflexion at heel contact (A1) and at 

toe off (A2) at all speeds, and less peak eversion during stance (A6) at speeds 1.39 – 

1.96 m·s-1 only compared to controls (Figure 7.6 Table A4.4 in Appendix 4).  A 

significant effect was observed in the average mean difference of the ankle (P < 

0.001) with the group with Achondroplasia being more dorsiflexed throughout the 

stride at every walking speed compared to controls (P < 0.001, Table 7.3 and Table 

A4.4 in Appendix 4). 

 

7.4.p2.3 Centre of mass movement  

7.4.p2.3.1 Vertical movements 

As an absolute measure, the CoM height of the group with Achondroplasia was lower 

at heel contact, local maxima during left stance, local minima during double support 

and, local maxima during right stance than controls at all speeds (P < 0.001, Table 

7.4). The vertical displacement of the CoM from initial heel contact was less in the 

group with Achondroplasia than controls’ during left stance phase at all walking 
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speeds (P < 0.05) other than 0.56 m·s-1 (P = 0.262, Table 7.5 and Table A4.5 in 

Appendix 4). The vertical displacement of the CoM from initial heel contact was also 

less in the group with Achondroplasia compared to controls’ during right stance 

phase at all walking speeds (P < 0.05) other than 0.56 and 0.83 m·s-1 (P = 0.491 and 

P = 0.561 respectively, Table 7.5 and Table A4.5 in Appendix 4). There was no 

difference in vertical displacement from initial heel contact during double support 

between groups (P = 0.347). 

 

7.4.p2.3.2 Medio-lateral movements 

The group with Achondroplasia had a greater medio-lateral displacement of the CoM 

at speeds 1.67, 1.94 m·s-1 and SSW only (P < 0.05, Table 7.5 and Table A4.5 in 

Appendix 4). 

 

7.4.p2.4 Gait profile score 

There was no difference between the left and right leg GVSs within each group (P > 

0.05), but the group with Achondroplasia had a higher GVS at all joints (P < 0.05) 

other than foot internal/external rotation (P > 0.05, Figure 7.7). The group with 

Achondroplasia had a higher anterior/posterior tilt GVS than controls at speeds 0.56 

(P = 0.048), 1.39 (P = 0.008), 1.67 (P = 0.003), 1.94 m·s-1 (P = 0.002) and SSW (P = 

0.051) but no difference was found at speeds 0.83 (P = 0.057) and 1.11 m·s-1 

compared to controls (P = 0.079, Figure 7.7). A higher hip flexion/extension, knee 

flexion/extension and ankle planta/dorsiflexion GVS was observed in the group with 

Achondroplasia at every speed compared to controls (P < 0.001, Figure 7.7). The 
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group with Achondroplasia also had a higher pelvic obliquity GVS at speeds 0.56 (P = 

0.026), 1.11 (P = 0.020), 1.39 (P < 0.001), 1.67 (P = 0.027), 1.94 m·s-1 (P < 0.001) and 

SSW (P = 0.001) compared to controls, but no difference was found at 0.83 m·s-1 (P 

= 0.074). Hip adduction/abduction and internal/external rotation GVSs were higher 

in the group with Achondroplasia at every walking speed compared to controls (P < 

0.001, Figure 7.6). The total GVS for the respective left and right leg was higher in 

the group with Achondroplasia at each speed compared to controls (P < 0.001, Figure 

7.7). The combination of the GVSs led to the GPS in the group with Achondroplasia 

being higher than controls at all speeds (P ≤ 0.001, Figure 7.7). 
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Part 3: Running results 
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7.5.p3.1 Spatial-temporal 

7.5.p3.1.1 Gait speed 

There were no differences between groups’ speeds measured using timing gates, 

compared to those measured during V̇O2 assessment on a motorised treadmill (P > 

0.05). When presented as NDN Fr values, the group with Achondroplasia were 

quicker at every running speed than controls (P < 0.001, Table 7.6). 

 

7.5.p3.1.2 Stride length 

The group with Achondroplasia had, on average, a 24% shorter stride length at every 

running speed compared to controls (P < 0.001, Figure 7.8a). When presented as 

NDN values, the group with Achondroplasia had a longer stride at every running 

speed compared to controls (P < 0.001, Table 7.6). 

 

7.5.p3.1.3 Stride frequency 

The group with Achondroplasia had, on average, a 21% higher stride frequency at 

every absolute speed compared to controls (P < 0.001, Figure 7.8b). There was no 

difference in NDN stride frequency between groups at any running speed (P > 0.05, 

Table 7.6). 
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7.5.p3.1.4 Temporal measures 

The group with Achondroplasia had a 21% average shorter stride time than controls 

at every walking speed, (P < 0.001, Figure 7.8c). When temporal events were 

normalised to stance time however, there were no differences in time to left toe off, 

right heel contact or right toe off for any running speed (P > 0.05, Table 7.6).  

 

7.5.p3.2 Discrete kinematic variables 

7.5.p3.2.1 Pelvis 

A between group effect was observed at P7 only (P = 0.013, Table A2.7 in Appendix 

2). The group with Achondroplasia had a greater peak external rotation of the pelvis 

during the stride (P7) compared to controls at running speeds 1.94, 2.22, 2.78 and 

3.33 m·s-1 only (P < 0.05, Figure 7.9 and Table A4.6 in Appendix 4). There was a 

significant group effect of the average position of the pelvis through the stride (P = 

0.038) with the group with Achondroplasia being more anteriorly tilted throughout 

the stride at every running speed compared to controls (P < 0.01, Table 7.7 and Table 

A4.6 in Appendix 4). 

 

7.5.p3.2.2 Hip 

There was a significant between group effect at the hip for measures H8 and H9 only 

(P < 0.001 and P = 0.008 respectively, Table A4.7 in Appendix 4). Greater internal 

rotation of the hip at heel contact (H8, P < 0.001) and at toe off (H9, P < 0.001) was 

observed in the group with Achondroplasia compared to controls at every running 
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speed (Figure 7.10 and Table A4.7 in Appendix 4). The average mean difference in 

hip angle was the same between groups when running (P = 0.776, Table 7.7 and Table 

A4.7 in Appendix 4).  

 

7.5.p3.2.3 Knee 

A between group main effect was found for K3 and K5-7 only (P < 0.05, Table A4.8 in 

Appendix 4). The group with Achondroplasia had more knee flexion at toe off (K3) at 

running speeds 2.22 and 2.78 to 3.33 m×s-1 only (Figure 7.11 and Table A4.8 in 

Appendix 4). A greater peak varus knee position at toe off (K5) for all running speeds 

(P < 0.05) and a larger peak varus knee position during the stance phase (K6) at 

running speeds 1.94 – 3.33 m·s-1 (P < 0.05) was observed in the group with 

Achondroplasia compared to controls. However, a lower peak varus position of the 

knee during swing was observed in the group with Achondroplasia for all running 

speeds, compared to controls (P < 0.05, Figure 7.11 and Table A4.8 in Appendix 4). 

The average mean difference in knee angle was the same between groups when 

running (P = 0.082, Table 7.7 and Table A4.8 in Appendix 4). 

 

7.5.p3.2.4 Ankle 

There was a between group effect for A5 and A6 only (P < 0.001 and P = 0.008 

respectively). The group with Achondroplasia had a greater peak abduction of the 

ankle at heel contact (A5) and a lower peak eversion of the ankle during stance (A6) 

compared to controls at every running speed (P < 0.05, Figure 7.12 and Table A4.9 in 

Appendix 4). A significant effect was observed in the average mean difference of the 
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ankle (P = 0.014) with the group with Achondroplasia being more dorsiflexed 

throughout the stride at every running speed compared to controls (P < 0.05, Table 

7.7 and Table A4.9 in Appendix 4). 

 

7.5.p3.3 Centre of mass movement  

7.5.p3.3.1 Vertical movements 

A significant between group effect existed for absolute CoM height at all running 

speeds (P < 0.001) with the position of the CoM being lower in the group with 

Achondroplasia than controls at heel contact, local minima during left stance, local 

maxima during first flight, local minima during right stance and local maxima during 

second flight, at all speeds (P < 0.001, Table 7.8). The CoM displaced less from heel 

contact to local minima during left stance at all running speeds in the group with 

Achondroplasia compared to controls (P < 0.01, Table 7.8 and Table A4.10 in 

Appendix 4), but only displaced less during the right stance at running speeds 1.96, 

2.22, 2.56 and 3.06 m·s-1 compared to controls (P < 0.05, Table 7.8 and Table A4.10 

in Appendix 4). The CoM of the group with Achondroplasia displaced less from heel 

contact to local maxima of the first flight phase at running speeds 1.67, 1.96, 2.78 

and 3.33 m·s-1 only (P < 0.05, Table 7.8 and Table A4.10 in Appendix 4), but displaced 

less from heel contact to local maxima of the right stance phase at every speed 

compared to controls (P ≤ 0.01, Table 7.8 and Table A4.10 in Appendix 4). 
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7.5.p3.3.2 Medio-lateral movements 

There was no difference in the total left-to-right displacement of each group’s CoM 

at any speed (P = 0.551, Table 7.8 and Table A4.10 in Appendix 4). 

 

7.5.p3.4 Gait profile score 

There was no difference between the left and right leg GVSs within each group (P > 

0.05), but the group with Achondroplasia had a higher GVS at all joints (P < 0.05) 

other than planta/dorsiflexion (P = 0.092) and foot internal/external rotation (P = 

0.056, Figure 7.13).  The group with Achondroplasia had more anterior/posterior tilt 

GVS during running at 3.06 m·s-1 only, compared to controls (P = 0.017, Figure 7.13). 

The group with Achondroplasia had more hip flexion/extension GVS at all running 

speeds compared to controls (P < 0.05) other than 2.22 and 2.50 m·s-1 (P = 0.360 and 

P = 0.076, respectively, Figure 7.13). The group with Achondroplasia had more knee 

flexion/extension GVS than controls at running speeds 1.67 and 1.94 m·s-1 only (P = 

0.005 and P = 0.022, respectively, Figure 7.13). More pelvis up/down, hip 

abduction/adduction and hip internal/external rotation GVS was observed in the 

group with Achondroplasia than controls at all running speeds (P < 0.05, Figure 7.13). 

The group with Achondroplasia had more pelvis internal/external rotation GVS than 

controls at all running speeds (P < 0.05) other than 2.50 m·s-1 (P = 0.56, Figure 7.13). 

The group with Achondroplasia had a greater GVS total in for the left and right leg 

than controls at all speeds (P < 0.05) other than 2.50 to 3.06 m·s-1 for the left leg (P 

> 0.05) and at 2.50 and 2.78 m·s-1 for the right leg (P > 0.05, Figure 7.13). GPS was 

higher in the group with Achondroplasia at ever running speed compared to controls 
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(P < 0.05) other than 2.50 and 2.78m·s-1 (P = 0.546 and P = 0.237, respectively, Figure 

7.13). 
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Part 4: General kinematic discussion 
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7.6.p4.1 Discussion 

This study aimed to measure spatio-temporal parameters, joint kinematics of the 

lower limbs, and CoM translations during incremental walking and running in adult 

males with Achondroplasia without limb lengthening surgery and controls. The main 

findings were that: 1) the group with Achondroplasia had a higher stride frequency 

and shorter stride length than controls at every walking and running speed; 2) NDN 

stride frequency and stride length did not eliminate the spatio-temporal differences 

between groups; 3) the group with Achondroplasia appear more ‘flexed’ at the 

pelvis, hip, knee and ankle throughout the stride when walking, but only at the pelvis 

and ankle when running, compared to controls; 4) as a global measure (GPS), the gait 

of individuals with Achondroplasia is quantifiably different to controls at every 

walking speed with differences lessening between groups when running; and 5) 

relative to initial position at heel contact, vertical displacement of the CoM was lower 

in the group with Achondroplasia at every gait speed, whereas their medio-lateral 

CoM movement was larger compared to controls at some walking speeds. With 

limited gait related research in populations with Achondroplasia (Rethlefsen and 

Tolo, 1998; Egginton et al., 2006; Inan et al., 2006; van der Meulen et al., 2008), this 

section of the discussion will focus on the difference in variables between groups’ 

SSW speed. 

 

With stride length being determined somewhat by leg length (Hof, 1996) and the 

group with Achondroplasia having shorter legs than controls (Chapter 2), their 

shorter stride length and higher stride frequency than controls at each set speed is 
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not surprising. More surprisingly is that all temporal gait events were similar 

between groups when normalised to stride time. Despite these events being the 

same between groups when time normalised, only stride frequency was similar 

between groups at set walking and running speeds when presented as NDN values. 

The NDN of spatio-temporal measures at SSW are commonly used within the 

literature to help to describe the natural oscillation of the legs (Minetti et al., 2000; 

Vaughan and O’Malley, 2005; P. A. Kramer and Sylvester, 2012). The higher Fr and 

NDN stride lengths in the group with Achondroplasia across all speeds suggests that 

they are taking relatively longer steps and translating relatively quicker than controls 

at set speeds. These differences are likely due to changes in kinematics, brought 

about to maintain the most economical stride frequency at set speeds (Minetti et al., 

1995), and discussed in more depth in section 8.5 of Chapter 8. 

 

The group with Achondroplasia had a slower SSW speed than controls and a higher 

absolute stride frequency, which is consistent with other comparisons of shorter 

versus taller groups, such as children (Stolze et al., 1997; P. A Kramer and Sarton-

Miller, 2008). When SSW spatio-temporal variables were presented as NDN values, 

the two groups in this study had a similar Fr, but the group with Achondroplasia had 

a longer NDN stride length and lower stride frequency than controls. A similar Fr 

indicate that group’s relative speed is similar to another and therefore the two 

groups move in a dynamically similar way (Minetti et al., 2000); although the 

differences in NDN stride length and frequency between the groups suggest 

otherwise. The kinematic patterns of gait in the group with Achondroplasia (Figure 

A1 and A2, Appendix 1) suggest that their relatively longer stride length may be 
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misleading. Despite the more flexed position in the group with Achondroplasia 

throughout the gait cycle compared to controls, the positions of the pelvis, hip and 

knee at heel contact are the same between groups. The range of motion of the joints 

is also similar from initial heel contact to second heel contact (Figure A1, Appendix 

1), suggesting that the relative stride length should be the same between groups. 

Despite the differences in NDN spatio-temporal values between groups, the 

inclusion of such parameters are used to help explain variability in physiological or 

biomechanical variables, such as C or joint power (Hof, 1996; Moisio et al., 2003; 

Pinzone et al., 2016; Chia and Sangeux, 2017). The differences in NDN values 

between the presented groups may not, therefore, be explained by kinematic 

differences, and could be due to differences in inertial parameters (e.g. moment of 

inertia and radius of gyration positions) between groups. The NDN values collected 

here, are more likely to help explain variability in physiological and/or biomechanical 

variables between the group with Achondroplasia and controls, as done in Chapter 

4 (relationship between V̇O2 and Fr). 

 

The group with Achondroplasia are indeed more flexed at all speeds when walking 

and running, which is similar to previous reports of the population (Rethlefsen and 

Tolo, 1998; Egginton et al., 2006; Inan et al., 2006; van der Meulen et al., 2008). For 

example, the SSW sagittal plane kinematic patterns in the current group with 

Achondroplasia appear to be more flexed than those reported by van der Meulen et 

al. (2008). van der Meulen et al. (2008) reported on a population with 

Achondroplasia with demographics similar to the current study (N = 11; age 24 (6) 

yrs), but their study’s population had undergone leg lengthening surgery, which the 



 

 253 

current group had not. Increasing leg length while maintaining natural foot length, 

as reported by van der Meulen et al. (2008), would result in a shorter foot-to-leg 

length ratio. This would require less knee flexion and less dorsiflexion during the 

swing phase to avoid toe contact with the floor and in turn lower the risk of falling 

(Mills et al., 2008). While this is a valid theory, contradictory data exist in a non-leg 

lengthened groups with Achondroplasia who exhibit less knee flexion during the 

stride compared to the current group with Achondroplasia (Egginton et al., 2006). 

This discrepancy is likely due to a more flexed hip angle during swing in Egginton’s 

group with Achondroplasia, reducing the need for increased knee flexion during 

swing phase to avoid toe contact with the floor. Differences in hip and knee flexion 

between the current group with Achondroplasia and Egginton’s group may be due 

to differences in the hip joint centre prediction used in the respective gait models 

and their appropriateness for control populations, as discussed in section 8.4.1 in 

Chapter 8. 

 

There are also more substantial differences in the frontal plane kinematics of the 

knee between the present study and available gait kinematic data in populations 

with Achondroplasia. In the present study, the knee of the group with 

Achondroplasia is more valgus than the controls’ during stance. This is possibly 

explained by either their more compliant patella tendon (and hypothesised 

compliant joint) than controls (as exhibited in Chapter 6), or, differences in joint 

centre predictions from the kinematic model used (discussed in section 8.4.1 of 

Chapter 8). For example, based on observations in Chapter 6 and assuming the 

relative ground reaction force (N ÷ body weight) is the same between groups, the 
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knee of individuals with Achondroplasia would displace more during stance than 

controls leading to a more valgus position; this is dependent on the vector of the 

ground reaction force. While this may explain frontal knee kinematic differences 

between groups, there are appears to be no joint laxity measures made during gait 

in populations with Achondroplasia, nor are there any specific gait models available 

to provide a more valid description of joint kinematics in the population. The knee 

of the current group with Achondroplasia remains in a more neutral position, 

although valgus, compared to children with Achondroplasia; they exhibit a varus 

knee position during the stance phase (Inan et al., 2006). Tendon compliance is lower 

in child controls compared to adult controls, with a more lax joint displacing more 

under load (O’Brien et al., 2010b). These differences seen in controls are likely to be 

consistent in populations with Achondroplasia and may explain the more varus 

position knee during stance in children with Achondroplasia compared to controls 

(Inan et al., 2006). 

 

The different joint positions during gait between groups may also explain the 

differences in vertical and medio-lateral displacement of CoM at all speeds between 

groups. For example, at ~25% of the gait cycle when walking, where the CoM is at its 

highest point for both groups, the group with Achondroplasia have a more flexed 

knee and dorsiflexed ankle. Being in this more flexed position leads to smaller 

vertical movements of the CoM relative to its initial position at heel contact. The 

group with Achondroplasia also had a more internally rotated hip and a more valgus 

knee than controls during the entire stride. The position of the thigh and shank 

during stance may explain some of the difference between the groups’ CoM medio-
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lateral translation during some walking speeds. Similar observations of CoM 

movement are made in clinical populations with affected gait (van den Hecke et al., 

2007; Weinert-Aplin et al., 2017), shorter stature (Minetti et al., 1994; Minetti et al., 

2000) and obese groups (Browning and Kram, 2007). The combined vertical and 

medio-lateral movement of the CoM is likely to have an effect on the external work 

done by the group with Achondroplasia which will have implications on the C of their 

gait (Cavagna et al., 1983) (see Chapter 4 and section 8.5 of Chapter 8). The altered 

walking kinematics of the group with Achondroplasia, which are possibly brought 

about by the need to avoid toe contact with the floor during the swing phase, may 

not only affect the CoM translations, but also the calculated GPS. 

 

The group with Achondroplasia had a consistently higher GPS compared to controls 

when walking and running. With GPS consisting of 15 joint kinematics, persistent 

differences in joint angle during the stride, including more flexed joint positions, will 

be highlighted as a larger GPS. For example, the knee and ankle at SSW have a 55 

and 64% higher flexion/extension and plantar/dorsiflexion GVS than controls, 

respectively, which contributes to the overall higher GPS. The SSW GPS of the group 

with Achondroplasia (11.4° (2.0)), is consistent with conditions that present 

musculoskeletal impairments such as spina bifida, ligamentous laxity, paraplegia and 

Cerebral Palsy (7.5 - 14.5° (Baker et al., 2012; Schweizer et al., 2014)). As the group 

with Achondroplasia have a more flexed lower limb, the use of GPS to compare their 

gait to controls may be viewed with caution. It would be more appropriate to 

compare the GPS of a population with Achondroplasia to other populations with 
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Achondroplasia (e.g. natural leg length vs leg lengthened) to observe clinical 

relevance.  

 

7.6.p4.2 Walking vs running 

When running, the group with Achondroplasia had more flexed lower limbs than the 

controls, but to a lesser extent than when walking. What appears as a more similar 

gait between groups when running is likely due to the inclusion of a flight phase.  

With the group with Achondroplasia having a longer foot-to-leg length than controls 

(Chapter 2), they need to flex their knee and/or dorsiflex their ankle more during 

swing to avoid toe contact with the floor; this is assuming that other joint positions 

are similar between groups throughout the gait cycle. For example, were the groups’ 

hip and ankle in a similar position throughout the gait cycle, the group with 

Achondroplasia would need to flex their knee more during gait to avoid toe contact. 

Alternatively, were the hip and knee of both groups to remain in a similar position 

throughout the gait cycle, the group with Achondroplasia would need to dorsiflex 

more through the swing phase to avoid contact with the floor. Both, or either, 

scenario would contribute to the group with Achondroplasia being in a more flexed 

position during gait than controls, as observed in the present Chapter. 

 

The toe is therefore higher from the floor when running (due to the body becoming 

a projectile) than when walking which means that the hip and knee and ankle do not 

need to flex and dorsiflex, respectively, as much to avoid toe contact during the 

swing phase. This was measured in this Chapter as similar hip and knee joint positions 
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between groups when running, but the group with Achondroplasia have a more 

dorsiflexed ankle than controls. This is also acknowledged in discrete sagittal joint 

kinematics, as the group with Achondroplasia had more knee flexion than controls 

at toe off when running only. Whereas when walking, the group with Achondroplasia 

had more peak knee flexion during the stance and swing than controls at all speeds. 

The measurement of joint kinematics during walking and running provide a 

hypothesis that individuals with Achondroplasia may present a more flexed gait 

when walking to avoid fall incidence. The multi-speed kinematic analysis of gait 

presented in this Chapter appears to be the only such data in any population with 

Achondroplasia, further work is required to help support this. 

 

7.7.p4.1 Conclusion  

The current study aimed to present a comprehensive analysis of gait during walking 

and running in a homogenous adult population with Achondroplasia. The SSW speed 

of individuals with Achondroplasia is slower and their stride frequency is greater than 

controls, whilst relative stride durations are similar between groups at all walking 

and running speeds. Numerous differences in discrete kinematics of the lower limbs 

exist between the groups during walking and running, which combine to present a 

more ‘flexed’ and quantifiably different gait of individuals with Achondroplasia 

compared to controls. The differences in gait  are possibly due to enable individuals 

with Achondroplasia avoid toe contact with the floor during the swing phase. 
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Chapter 8: General discussion 
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8.1 Introduction 

There is a wealth of data surrounding the genetic mutation, fibroblast growth factor 

receptor 3 (FGFR3), and interventions related to increasing stature, such as growth 

hormone therapy (Horton et al., 1992) and surgical procedures (Park et al., 2015) for 

individuals with Achondroplasia. As established through the review of literature 

(Chapter 1), there is a distinct lack of functional outcome measures described in 

adults with Achondroplasia, despite descriptions of recovery from limb lengthening 

surgery. A description of primary outcome measures, such as oxygen consumption 

(V̇O2), maximal strength and gait performance, is essential to the understanding of 

any impairments associated with the individuals with Achondroplasia to then inform 

on stature increasing interventions. The primary aim of this thesis was to present 

physiological and biomechanical data related to functional tasks in an adult 

population with Achondroplasia. More specifically, this thesis addressed the 

following aims: 

1) To describe accurately the in vivo mass distribution, body composition and 

anthropometry of adults with Achondroplasia; 

2) To ascertain the maximal aerobic capacity (V̇O2max)  of adults with 

Achondroplasia; 

3) To describe the submaximal V̇O2 profile and metabolic cost (C) during 

incremental walking and running in adults with Achondroplasia; 

4) To measure the in vivo isometric maximal voluntary contraction (iMVC) 

during knee extension in adults with Achondroplasia; 
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5) To determine the in vivo mechanical properties of the patella tendon of 

during knee extension iMVC in adults with Achondroplasia; 

6) To describe the lower limb kinematics during walking and running of adults 

with Achondroplasia; 

Throughout the thesis, data was presented relative to body dimension and body 

mass to enable more valid comparisons to age matched males without 

Achondroplasia (controls).  

 

8.2 Main findings of the thesis 

Adults with Achondroplasia have less bone mineral content and density (BMC and 

BMD respectively), less fat free mass (FFM) and more fat mass than controls at the 

total-body level with differences lessening when relative to total-limb values 

(Chapter 2); the V̇O2max  of adults with Achondroplasia is lower than controls, but 

similar when presented relative to total-body mass (TBM) (Chapter 3); walking and 

running C is higher in adults with Achondroplasia than controls, which persists when 

presented relative to TBM, fat free mass (FFM) and leg length (Chapter 4); absolute 

and relative iMVC force production of knee extensors and knee flexors, and specific 

force of the vastus lateralis (VL) is lower in adults with Achondroplasia compared to 

controls (Chapter 5); patella tendon Young’s Modulus is lower in adults with 

Achondroplasia compared to controls (Chapter 6), and; the gait of individuals with 

Achondroplasia is more ‘flexed’ and quantifiably different to controls when walking 

and running (Chapter 7). Figure 1 shows a flow diagram of the main findings of each 

chapter and how they may interact with each other. 
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Two main themes were identified from the current thesis. Firstly, there some 

functional measures between groups that can be explained by body proportions, 

lengths, total-body masses and segmental-body masses (see section 8.3 below). 

When comparing measures of bone (Chapter 2), muscle (Chapter 5), tendon (Chapter 

6) and gait (Chapter 7), differences between groups persisted when presented 

relative to relevant physiological and biomechanical measures. The differences in 

intrinsic bone properties between groups may be due to the mutated FGFR3 gene 

that causes Achondroplasia. Briefly, mutated FGFR3 amplifies the proliferation and 

differentiation of growth plate chondrocytes, stunting bone growth (Deng et al., 

1996). Being a collagen defect, the mutation may also be a cause of the intrinsic 

differences of muscle (Chapter 5) and tendon (Chapter 6) but is beyond the scope of 

this thesis.  

 

Secondly, the gait of individuals with Achondroplasia is quantifiably more ‘flexed’ 

than controls (see section 8.4 below). Gait differences may be due to differences in 

body proportions (Chapter 2), neuromuscular function (Chapters 5 and 6) and/or 

limitations to the measurement of gait kinematics (see section 8.4.1 below). The 

absolute and relative differences between groups’ physiological and kinetic 

measures during iMVC and gait may have implications C (section 8.5 below) and 

therefore help explain the differences in C between groups (Chapter 4). This Chapter 

will discuss the main themes from this thesis and link the respective findings from 

each experimental Chapter in an attempt to explain the persistent difference in C 

between groups.  
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8.3 Are individuals with Achondroplasia disproportionate? 

This thesis aimed to measure numerous neuromuscular and kinematic variables 

during maximal and submaximal functional tasks in adults with Achondroplasia. 

Where differences were observed in physiological and biomechanical variables, 

these were presented relative to body dimensions and total-body and segmental 

mass, due to the disproportionate dimensions of the body of individuals with 

Achondroplasia (i.e. limb-to-torso lengths relative to controls). Based on the 

available data, and those presented in Chapter 2, the group with Achondroplasia in 

this thesis are osteopenic using the current classification (1.5 SD lower than controls, 

French et al. (2002)), but when BMD was presented relative to total-limb BMD and 

volumetric BMD (Chapter 2), no differences were observed between groups. In fact, 

the group with Achondroplasia had higher BMD of the shank when expressed relative 

to total-limb measures. The absolute V̇O2max  was lower in the group with 

Achondroplasia whereas submaximal V̇O2  was higher than controls. When V̇O2max 

was presented relative to TBM and FFM, and V̇O2 to TBM and geometric measures 

(Froude’s number, Fr) however, differences between groups were accounted for 

(Chapter 3 and 4, respectively). Surprisingly, a lower specific force of the VL was 

observed in the group with Achondroplasia compared to controls’ (Chapter 5); this 

result however, may have been due to methodological limitations and are discussed 

later in this Chapter (section 8.6). In Chapter 6, morphological and dimensional 

measures of the patella tendon were accounted for during loading (stress ÷ strain = 

Young’s Modulus). Despite this, the patella tendon in the group with Achondroplasia 

was more compliant than controls’. Indeed, whilst the group with Achondroplasia 

are anatomically and morphologically disproportionate to controls, this thesis has 
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shown that some clinical measures and exercise tasks can be scaled to body 

dimensions and masses, and are thus comparable to controls from a qualitative 

perspective.  

 

Furthermore, as with other populations where morphological differences describe 

functional differences (e.g. children, sex, stature), it is apparent that meaningful 

physiological differences in individuals with Achondroplasia are largely negated 

when the appropriate morphological differences are considered. For example, total-

body measures suggest that groups with Achondroplasia are at risk of a number of 

health complications (e.g. osteopenia and increased risk of cardiovascular events) 

when compared to control reference data (French et al., 2002; T. Kelly et al., 2009). 

When these data are expressed relative to total-body and total-limb values however, 

this may not be the case. The commonly used normative data sets to define health 

states of control populations are valid given the similarity in the populations used to 

provide such data (T. Kelly et al., 2009). However, comparisons are only valid when 

they are between populations of similar age, sex and stature, of which there are 

ample data for control populations. In Chapter 2 it was demonstrated that, due to 

the disproportionate torso-to-limb length ratios between groups, such normative 

data sets (i.e. made up of large control database) are redundant for individuals with 

Achondroplasia. To the author’s knowledge, there remains no extensive body 

composition database for specific comparisons between groups with 

Achondroplasia. Therefore, the data and analysis from the current study suggest that 

the classification of health states of individuals with Achondroplasia be made with 
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caution by clinicians or with an attempt to present segmental data relative to total-

body or total-limb mass, as done in Chapter 2. 

 

8.4 Why is the gait of individuals with Achondroplasia ‘different’? 

In Chapter 7 a number of different discrete gait kinematic variables were presented 

between the groups included in this thesis and to other groups with gait limiting 

pathologies. The comparison of the entire gait cycle between populations is complex 

though, mainly due to the number of kinematic variables biomechanical models can 

create. While the observations of joint kinematics of the group with Achondroplasia 

were consistent with other groups with Achondroplasia (Rethlefsen and Tolo, 1998; 

Egginton et al., 2006; Inan et al., 2006; van der Meulen et al., 2008), to help identify 

a global score of gait, the Gait Profile Score (GPS) was used. Results showed that the 

gait of the group with Achondroplasia was quantifiably different to controls. 

 

The GPS was devised for, and used in the present thesis, to describe the gait cycle 

using a single number. GPS has been used to describe and determine gait ‘quality’ in 

clinical populations compared to controls (Baker et al., 2009; Beynon et al., 2010; 

Baker et al., 2012). The use of GPS alone may be useful as a clinical measure, but 

does not allow for comparisons of kinematic patterns and does not provide a full 

explanation for the differences between groups’ GPS; this is expanded throughout 

this section and in section 8.4.1. The results presented in Chapter 7 suggest that the 

gait of individuals with Achondroplasia is different to controls’ and to that of other 

musculoskeletal impaired conditions (self-selected walking (SSW) GPS of individuals 
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with Achondroplasia 11.4° (2.0); controls 4.1° (1.8); individuals with spina bifida, 

ligamentous laxity, paraplegia and Cerebral Palsy, 7.5 - 14.5° (Baker et al., 2012; 

Schweizer et al., 2014)).  

 

The GPS is made up of 15 gait variable scores (GVSs). The largest differences between 

groups’ GVSs lay in the sagittal plane (knee flexion/extension (55% at SSW) and ankle 

plantar/dorsiflexion (64% at SSW)) and the transverse plane (hip internal/external 

rotation (50% at SSW)). These are consistent with the differences in sagittal and 

transverse kinematic patterns and discrete gait events observed in the current thesis 

and elsewhere (Rethlefsen and Tolo, 1998; Egginton et al., 2006; Inan et al., 2006; 

van der Meulen et al., 2008). While the difference in groups’ GPS values are a result 

of these different gait kinematics, there are a number of potential reasons for the 

gait of individuals with Achondroplasia to exhibit a ‘more flexed’ position of lower 

limb joints and therefore a lower ‘quality’ of gait than controls. Some of the 

difference in the more flexed gait of individuals with Achondroplasia compared to 

controls is expanded on in Chapter 7 (section 7.5.1, which discusses the foot-to-leg 

length ratio and toe clearance during walking and running). The term ‘quality’, which 

has been associated with GPS, is ambiguous in the current context as it has limited 

biomechanical or physiological meaning. Certainly, a greater GPS infers a larger 

‘difference’ in gait, but not necessarily a lower quality. For example, altering one’s 

gait to maintain locomotion and reduce the likelihood of falls implies a high level of 

gait quality. For the groups with Achondroplasia, their apparent altered gait, which 

may be required to maintain locomotion, is measured as a higher GPS value 

compared to controls; this GPS value infers a lower quality of gait. This thesis 
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presents numerous variables that could elicit the subtle differences in gait between 

groups which in turn lead to a higher GPS value for individuals with Achondroplasia. 

 

The lower force production of the VL during iMVC, and assumed lower force 

production of other ambulatory muscles, in individuals with Achondroplasia 

compared to controls (Chapter 5) are likely to be apparent during gait. A lower 

propulsive ground reaction force (GRF) during stance, as a result of the lower force 

generated from the legs, would not project the body as far as a higher GRFs. This 

would likely lead to a lower vertical movement of the body’s centre of mass (CoM), 

relative to its position at heel contact, and a shorter stride length; both of which are 

observed in the group with Achondroplasia in Chapter 7. To maintain locomotion 

whilst the having a lower CoM, the leg would either displace through the swing phase 

quicker or not displace as far as; the latter was observed in the group with 

Achondroplasia compared to controls (Chapter 7). A more flexed hip, knee and ankle 

are therefore required to avoid tripping, again observed in the group with 

Achondroplasia (Chapter 7). Further to a lower specific force and more compliant 

tendon of the group with Achondroplasia at iMVC, a more compliant patella tendon 

was also observed at a standardised force (1756 N). This would suggest that the joints 

of individuals with more compliant tendons displace more during tasks that require 

the same force production (i.e. set gait speeds) compared to those with stiffer 

tendons. Assuming that other tendons that are involved in gait (such as the Achilles) 

are more compliant in individuals with Achondroplasia compared to controls, more 

joint displacement during concentric, eccentric and isometric loading of the 

ambulatory joints would be observed (Rosager et al., 2002). This in turn would 
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change the joint kinematics during gait and may explain some of the differences in 

certain joint kinematics between groups, such as the knee valgus/varus angles 

(Chapter 7). 

 

While this thesis presents a number of neuromuscular differences that could alter 

gait kinematics, the contribution of the VL and patella tendon would only explain 

some of the knee joint kinematics and not the overall ‘atypical’ gait of the group with 

Achondroplasia. It is likely therefore, that the difference in gait between groups are 

due to either 1) the anthropometric differences between groups, such as the foot-

to-leg length ratio, which requires an altered gait pattern to avoid toe contact with 

the floor, 2) morphological differences in joints associated with ambulation, of which 

there are limited data in groups with Achondroplasia (Akyol et al., 2015) or, 3) 

systematic differences in the model used to measure joint kinematics during gait. 

 

8.4.1 Are the differences in gait between groups genuine or measurement error? 

This thesis used the Plug-in-Gait model to predict lower extremity joint centres of 

both groups. Predicted joint positions were then used to estimate limb lengths 

(Chapter 2) and joint kinematics during walking and running (Chapter 7). Plug-in-Gait 

is a hierarchal model where distal joints are predicted based on proximal joints. For 

gait kinematics therefore, the accurate prediction of the hip joint centre (HJC) is of 

utmost importance. The HJC prediction in Plug-in-Gait is based on leg length and the 

anterior and posterior processes of the iliac spine. Whilst Plug-in-Gait does not use a 

direct HJC marker, an interpretation of the HJC (the greater trochanter) is required 
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to place the lateral thigh marker. Inaccurate placement (i.e. too anterior or posterior) 

of the thigh marker can lead to over- or under-predicted hip rotation and knee flexion 

angles during movement, known as “cross-talk” (Kadaba et al., 1990; Baker et al., 

1999). A separate analysis of the HJC in the current group with Achondroplasia 

suggests that the Plug-in-Gait HJC may have inadvertently caused cross-talk. Figure 

8.2 shows the average estimated HJC of Plug-in-Gait for both the group with 

Achondroplasia and controls during calibration and the estimated greater trochanter 

position (extrapolated line from knee and thigh markers) for the group with 

Achondroplasia only. The Plug-in-Gait HJC appears to be 32.5 mm posterior to the 

interpreted HJC from the greater trochanter; the thigh marker is then in a more 

anterior position in the Plug-in-Gait model. When using a 50 mm wand thigh marker 

(which this thesis did not use), for each 5 mm of anterior/posterior misplacement a 

~3° additional internal/external hip rotation is observed (Baker, 2013). Assuming this 

is similar when using skin markers, ~20° of additional internal hip rotation would be 

observed in the current group with Achondroplasia. The difference in groups’ SSW 

knee valgus position at peak knee flexion during swing, where cross-talk is most likely 

to occur, is ~24° (Figure A1.1, Appendix 1). The apparent posterior HJC predicted by 

Plug-in-Gait in the group with Achondroplasia may therefore cause some of the 

greater knee flexion, internal hip rotation and knee valgus angles reported in the 

group, but there is little work into the HJC prediction of groups with Achondroplasia 

to confirm this. 

 

What appears to be the only study to estimate the HJC of individuals with 

Achondroplasia shows contrary data to those presented in Figure 8.2. Broström et 
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al. (2009) showed that a functional method (Ehrig et al., 2006) identified the a 15.6 

mm more posterior HJC in individuals with Achondroplasia (range 1.7 – 31.3 mm) 

than the Plug-in-Gait model (Davis et al., 1991). Broström et al. (2009) suggested that 

a functional prediction of HJC in individuals with Achondroplasia should be 

incorporated into future gait research. Were the functional model suggested by 

Broström et al. used in the present study, the HJC in the group with Achondroplasia 

would have been even more posterior than that predicted by Plug-in-Gait and only 

exacerbate the apparent cross-talk observed in Chapter 7. Were either the Plug-in-

Gait and/or the model suggested by Broström et al. (2009) correct in identifying the 

HJC of individuals with Achondroplasia, the palpable identification of the greater 

trochanter would only misalign the thigh marker. This in turn would cause cross-talk 

and errors in hip internal/external rotation, again likely altering the kinematic 

patterns of individuals with Achondroplasia.  

 

Regardless of other available models or suggestions for gait analysis in groups with 

Achondroplasia (Ehrig et al., 2006; Broström et al., 2009), the identified 32.5 mm 

more posterior HJC (relative to the greater trochanter) in the group (Chapter 7) 

would likely only alter knee flexion and internal hip rotation joint angles. With Plug-

in-Gait being hierarchical, the ankle angle is based on the respective knee and ankle 

joint centres. Therefore, the more posteriorly tilted pelvis and more dorsiflexed ankle 

observed in the group with Achondroplasia throughout the walking and running 

stride can be interpreted as a more accurate joint position. The potential inaccurate 

prediction of the HJC in the group with Achondroplasia may therefore only explain 

some of their more ‘flexed’ position through the stride compared to controls. It does 
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not explain the more anteriorly tilted pelvis and dorsiflexed ankle of the group with 

Achondroplasia when walking and running compared to controls.  

 

It is probable therefore, that individuals with Achondroplasia are indeed more 

‘flexed’ through their gait cycle and, due to their more anteriorly tilted pelvis and 

dorsiflexed ankle through gait, their GPS would be higher than controls regardless of 

the model used. It is also probable that the potential error in joint kinematic 

measures of the group with Achondroplasia are systematic and the results from this 

thesis could be adjusted were the HJC prediction corrected for. Notwithstanding the 

above comments, this was beyond the scope of this thesis and is a basis for future 

work. 
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8.5 Why is the metabolic cost of adults with Achondroplasia higher than controls? 

Despite the use of body mass and leg length corrected speed (Fr), there was a higher 

C in the group with Achondroplasia compared to controls (Chapter 4). Walking and 

running C is a multifaceted parameter which combines biomechanical and 

physiological factors (Saunders et al., 2004). What was particularly interesting in 

Chapter 4 was that the average difference in walking C between groups (~20%) was 

higher than the average difference in running C (~12%). The current thesis observed 

a number of parameters that may explain the overall lower C in the group with 

Achondroplasia compared to controls and the similar C between groups when 

running compared to walking. 

 

The lower specific force of the VL at iMVC in the group with Achondroplasia 

compared to controls suggests that for a given submaximal task, e.g. walking and/or 

running, the muscle requires greater activation to recruit the fibres needed to 

produce the same force required for that task, which is associated with greater C 

than in controls (Hortobágyi et al., 2011). Also, in Chapter 5, the group with 

Achondroplasia presented a greater coactivation of the hamstrings during iMVC knee 

extension than controls. This additional contraction of antagonists during knee 

extension is likely to increase V̇O2 of their gait, as observed in controls (Mian et al., 

2006). However, both activation and coactivation profiles of locomotion muscles 

during gait were not measured in any of the Chapters within this thesis and is 

therefore scope for future work.  
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Further to lower VL force production than controls, the group with Achondroplasia 

also had a more compliant patella tendon at iMVC (Chapter 6). Given the more 

compliant patella tendon in the group with Achondroplasia, and assuming this 

finding is consistent in other tendons involved in locomotion, it is likely that there is 

an energy loss (through heat dissipation) during the lengthening of the tendons 

during with gait. The loss of energy, though hysteresis, was not measured in either 

group, but assuming there is greater hysteresis in the patella tendon of individuals 

with Achondroplasia (due to it being more compliant), the energy must be 

supplemented, which during exercise is identified by a higher C. This theory is 

observed in other controls groups, albeit predominantly in the Achilles tendon 

(Fletcher et al., 2010; Albracht and Arampatzis, 2013), and may explain some of the 

higher C during walking and running of the group with Achondroplasia. Assuming the 

lower force production and more compliant tendon contributes to the overall higher 

C in the group with Achondroplasia, these findings would not help explain the more 

similar C between the groups when running. It is therefore most likely that the 

difference in C between groups, and between modes of locomotion, is due to limb 

and CoM movement during gait. 

 

Both limb movement and CoM translations are strongly linked with changes in C in 

controls, gait limited pathologies, shorter statured and clinical groups (Minetti et al., 

1994; Minetti et al., 2002; Detrembleur et al., 2005; Browning et al., 2006; van den 

Hecke et al., 2007; Browning et al., 2009; Peyrot et al., 2009; Weinert-Aplin et al., 

2017). van den Hecke et al. (2007) observed a higher external work, i.e. CoM 

movement relative to the environment, (Cavagna et al., 1964; Cavagna and Kaneko, 
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1977), due to greater medio-lateral movement of the CoM in individuals with 

Cerebral Palsy. Browning et al. (2007) observed similar results in the obese. Minetti 

et al. (1994; 2000) showed that African Pygmies and individuals with growth 

hormone deficient (GHD) populations do more internal work, i.e. movement of the 

limbs relative to the CoM, (Cavagna et al., 1964; Cavagna and Kaneko, 1977), when 

walking and running, but less external work when running compared to controls. The 

same African Pygmy and populations with GHD show a smaller difference in C 

compared to controls when running than when walking. Groups that exhibit a higher 

total mechanical work (internal + external work) invariably exhibit a higher C than 

controls (Ferretti et al., 1991; Minetti et al., 1994; Minetti et al., 2002; Detrembleur 

et al., 2005; Browning and Kram, 2007; van den Hecke et al., 2007; Peyrot et al., 

2009). Based on the kinematic and GPS results from Chapter 7, it may be assumed 

that individuals with Achondroplasia moving their limbs more than controls, and 

therefore do more internal work during walking and running. The data in Chapter 7 

also infers that individuals with Achondroplasia do less external work than controls 

when walking and running, due to their smaller relative vertical movements of the 

CoM. However, when walking, the group with Achondroplasia have greater medio-

lateral movements than controls, which likely raises the amount of external work for 

walking and, in turn, leads to a higher C. While internal and external work were not 

directly measured here, differences in joint motions and CoM translations may 

explain the difference in C between groups and between modes of locomotion.  

 

As described in Chapter 7 and above, the differences in gait of the group with 

Achondroplasia compared to controls may be required for them to maintain gait. 
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Therefore, possible differences in internal and external work are manifested by the 

necessity for a more flexed position. By incorporating measurements of internal and 

external work alongside metabolic measurements, calculation of walking and 

running efficiency could be estimated in populations with Achondroplasia. In groups 

of differing stature and mass, efficiency values during walking and running are similar 

to control populations (Ferretti et al., 1991; Minetti et al., 1994; Minetti et al., 2002; 

Griffin et al., 2003; Peyrot et al., 2009). Inclusion of internal and external work and C 

within a population with Achondroplasia may provide a better understanding of the 

relationship between a number of the variables measured in this thesis (i.e. force 

production, gait kinematics and energetics). To date, there appears to be no such 

measure in any population with Achondroplasia and is therefore a logical scope for 

future work in this population. 

 

This thesis presents a multitude of physiological and biomechanical pathways that 

may explain the high C of adults with Achondroplasia compared to controls during 

running and, particularly, walking. However, only variables that may explain the 

higher C in isolation are presented, rather than during gait. Further work 

incorporating measures of tendon excursion and force production when analysing C 

throughout incremental speeds in both groups would further explain the data 

presented here. Furthermore, many of the methods used in this thesis were derived 

from, and validated in, control populations. The inclusion of such measures within 

the investigated group with Achondroplasia may have therefore incurred some 

inaccuracy in the results of this thesis.  
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8.6 Limitations to this thesis  

As described in Section 2.3 of Chapter 2, the group with Achondroplasia included in 

this thesis represents the most homogenous skeletal dysplasic group available in the 

literature. While the data from this thesis are applicable to the other active males 

with Achondroplasia within the U.K. and the world, they do not necessarily represent 

other cohorts with Achondroplasia, such as females, the elderly, children or inactive 

males. There are certainly differences in V̇O2max,  V̇O2,  strength and tendon 

compliance between control populations of different ages, sexes and activity levels, 

which would suggest the same is apparent in other populations with Achondroplasia 

(Cuneo et al., 1991; Ferretti et al., 1991; Bottinelli et al., 1997; Goran et al., 2000; 

Reeves et al., 2003a; Tolfrey et al., 2006; Onambélé et al., 2007; Morse et al., 2008; 

O’Brien et al., 2010b; Hicks et al., 2017). Very few of the measures made here have 

been made in any populations with Achondroplasia, other than children (Rethlefsen 

and Tolo, 1998; Egginton et al., 2006; Takken et al., 2007; van der Meulen et al., 

2008). What is likely however, is that in other skeletal dysplasic conditions, and the 

wider community with Achondroplasia, differences in functional measures to 

controls or between populations with Achondroplasia, such as strength and gait, are 

likely to be explained in part by morphological differences. What cannot be inferred 

from the present findings of this thesis, is by how much or by what magnitude even 

after scaling.  

 

Chapter 5 and 6 showed a lower VL specific force and a more compliant patella 

tendon in individuals with Achondroplasia than controls, respectively. The 

measurement of both specific force and tendon compliance involved the respective 
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attainment of muscle volume using predetermined constants of magnetic resonance 

imaging (MRI) (Morse et al., 2007a) and patella tendon cross sectional area (CSAPT) 

using ultrasound scans. Chapter 5 does describe the methodological limitation of 

using such estimations, but in brief, the denominator in the calculation of specific 

force appears to be a pseudohypertrophy, which then underestimates specific force. 

MRI would certainly improve the estimation of muscle volume within the group with 

Achondroplasia, but commercially available MRI analysis software, like B-mode 

ultrasound used in this thesis, does not consider fat infiltration within its estimate. 

The higher total-body fat content in the group with Achondroplasia compared to 

controls (Chapter 2) would likely be identified as muscle tissue rather than fat tissue 

when using the most basic function of either MRI or ultrasound. A 

pseudohypertrophy of the VL in the individuals with Achondroplasia may therefore 

have been observed, leading to a lower specific force compared to controls, as 

observed in Chapter 5. Without the insight of fibre biopsy derived measures of fat 

infiltration, the degree to which intramuscular adiposity contributes to the 

overestimation of muscle mass cannot be confirmed. Again, as described in Section 

5.5.2 of Chapter 5, this limitation is not limited to individuals with Achondroplasia.    

 

While ultrasound to quantify CSAPT is considered reliable (Mc Auliffe et al., 2017) and 

has been used in numerous populations (Reeves et al., 2003a; Onambélé et al., 2007; 

K. E. Burgess et al., 2009a; Gellhorn and Carlson, 2013), the technique has not been 

validated against MRI. It should be noted however that the control group’s CSAPT is 

similar to that presented previously using both ultrasonography (Onambélé et al., 

2007; O’Brien et al., 2010b) and MRI (Carroll et al., 2008; Seynnes et al., 2009). 
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Despite some potential measurement error of CSAPT in the group with 

Achondroplasia, there is a degree of confidence that the difference in patella tendon 

compliance would persist despite the higher measurement variance likely to be 

observed when using ultrasonography compared to MRI. 

 

For the kinematic assessment of lower limbs during gait, a Plug-in-Gait model was 

used in both groups. The consistently flexed knee position of the group with 

Achondroplasia may have been brought about by the estimation of their hip joint 

centre (HJC), which is explained in detail in the Discussion of Chapter 7 and in this 

Chapter (Section 8.4.1). While Broström et al. (2009) present data to suggest the HJC 

predictions of individuals with Achondroplasia are different between three methods 

(Plug-in-Gait, functional and regression), only four individuals were included in their 

study. To the author’s knowledge, the data of Broström et al.’s group remain the only 

available data that indicates a prediction of HJC in any population with 

Achondroplasia. In addition, only one participant from Broström’s study appears to 

be comparable to the cohort of individuals with Achondroplasia included in this 

thesis. While Plug-in-Gait may incur error of HJC prediction in individuals with 

Achondroplasia and, in turn, miscalculate knee angle of the group during ait, there is 

no specific model to ascertain the joint kinematics of the group in the literature. 

 

8.7 Implications of the thesis and future recommendations 

This thesis presents a number of novel findings related to physiological and 

biomechanical function in an adult population with Achondroplasia. The results from 
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this thesis identified three main challenges for the population that are the scope of 

future work. Firstly, clinical descriptions of the condition appear inaccurate in their 

current form. For example, the relative presentation of body composition lessens 

some of the clinical classifications commonly given to the population when 

presented as total-body values. Secondly, exercise interventions may be a viable 

option for clinicians to pursue in order to improve some of their functional measures 

from this thesis. Lastly, throughout this thesis the methods employed to measure all 

variables were chosen based on their development and validity within control 

populations. There appears to be no validated methods of functional measures for 

the populations with Achondroplasia. The following sections of this discussion will 

focus on these three implications. 

 

8.7.1 Large reference data sets are required for populations with Achondroplasia  

Clinical descriptions of an individual are based on the comparison of a physical 

parameter to a reference data set (T. Kelly et al., 2009). For many of the 

anthropometric measures made in Chapter 2, the group with Achondroplasia appear 

to be at a heightened risk of a number of health complications compared to controls 

(Hecht et al., 1987; Wynn et al., 2007; Matsushita et al., 2016). When the data were 

presented relative to total-body and total-limb measures however, this was not the 

case. The commonly used normative data sets to define health states of controls 

populations are valid given the similarity in the populations used to provide such data 

(T. Kelly et al., 2009). However, comparisons are only valid when they are between 

populations of similar age, sex and stature, of which there are ample control data. 
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For accurate and valid descriptions of clinical states in adults with Achondroplasia to 

be made, large normative data sets of the population are required. Currently, only 

age for height and age for weight data of populations ≤18-years-old are available for 

populations with Achondroplasia (Horton et al., 1978b; Hecht et al., 1988; Hunter et 

al., 1996a). 

 

8.7.2 Exercise interventions 

There are ample data available in the literature that link resistance, high impact and 

aerobic exercise to improvements in many of the physiological and biomechanical 

variables measured in this thesis. As examples: BMD of the femoral neck and lumbar 

column increase following resistance, high impact and aerobic exercise interventions 

in young, menopausal and elderly women (Vincent and Braith, 2002; Vainionpää et 

al., 2005; Mosti et al., 2014; Beavers et al., 2017); resistance training leads to 

improvements in both force production and tendon stiffness and is observed in 

controls (Kubo et al., 2001a; Kubo et al., 2001b; Onambélé et al., 2008; Seynnes et 

al., 2009), the elderly (Reeves et al., 2003a; Reeves et al., 2003b; Onambélé et al., 

2006; Onambélé et al., 2008) and children (Waugh et al., 2014); cardiovascular 

training improves V̇O2max in controls (Nybo et al., 2010), individuals with GHD (Cuneo 

et al., 1991; Woodhouse et al., 1999), children (Carazo-Vargas and Moncada-

Jiménez, 2015), the obese (Verheggen et al., 2016) and clinical groups (Gjellesvik et 

al., 2012); there is also a consensus that steady state submaximal exercise (~65% 

V̇O2max ) induces fat metabolism (Achten and Jeukendrup, 2004) and alters mass 

distribution (both muscular and adiposity). Despite the wealth of exercise 
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interventions conducted on controls, there appears to be no equivalent data in any 

population with Achondroplasia. 

 

Based on the results from Chapter 2 and the assumption of a larger relative ground 

reaction force (N/kg) during walking and running of an individual with 

Achondroplasia compared to controls, the bone turnover of individuals with 

Achondroplasia is similar to controls; this is based on the shank and foot BMC and 

BMD relative to the respective total-leg values. An assumption can be made 

therefore that improvement of other tissues, such as muscle and tendon, could be 

made through exercise in populations with Achondroplasia. Through such 

interventions, BMD, V̇O2max, force production and tendon compliance are likely to 

improve strength imbalance (such as that observed between the hip flexors 

(hamstrings) and extensors (quadriceps) in Chapter 5), lower the risk of falls 

(Onambélé and Degens, 2006; Onambélé et al., 2008), increase the likelihood of 

adherence to regular habitual physical activity (Weinsier et al., 2000), improve 

walking and running C (Albracht and Arampatzis, 2013; Arampatzis et al., 2006; 

Fletcher et al., 2010) and in turn improve quality of life and lower the risk of health 

complications (Wilmot et al., 2012).  

 

It would be reasonable to suggest from the available data in controls, that exercise 

interventions within populations with Achondroplasia may improve some of their 

functional measures made within this thesis. However, with Achondroplasia 

affecting bone end-plate development and structure, it is likely that the ability of a 

person with the condition to perform complex resistance exercises is different to 
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controls. Therefore, it would be advised that movement analyses of different 

exercises be explored in the populations with Achondroplasia prior to intervening 

with previously utilised exercise modes. 

 

8.7.3 Methodological improvements in research for populations with Achondroplasia 

As discussed in Chapter 7, and earlier in the current Chapter (Section 8.6), the 

measurements of physiological and biomechanical variables, such as the joint centre 

predictions and body segment masses, may not be as accurate as would be ideal to 

optimise the accuracy and validity of the reported data. Conventional gait models, 

such as Plug-in-Gait, were developed using populations similar to the control group 

included in this study (Davis et al., 1991). The genetic mutation that leads to 

Achondroplasia predominantly affects the growth plates of the long bones. Both the 

proximal and distal ends of the long bones appear deformed compared to controls 

(Ponseti, 1970). Certainly, the data presented by Aykol et al. (2015) and those 

presented in Chapter 5, show that the knee morphology of individuals with 

Achondroplasia is different to that of controls. Broström et al. (2009) presented data 

to suggest the HJC predictions are different between different prediction methods 

(Plug-in-Gait, regression and functional) in individuals with Achondroplasia. 

Therefore, for more valid descriptions of gait, appropriate anatomical models of in 

individuals with Achondroplasia that provide accurate and valid predictions of the 

lower limb joint centres are required. An example of such a technique would be to 

use a real time dual-arm fluoroscopy device, although this would expose the 

participant to unnecessary amounts of radiation. 
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The data presented in Chapter 2 were collected using dual energy X-ray 

absorptiometry. While the methods used to measure body composition and the 

methods of segmenting the scans are reliable (Durkin et al., 2002; Durkin and 

Dowling, 2003; Glickman et al., 2004), other methods, such as MRI or computer 

tomography, are likely to quantify total-segment masses more accurately than DEXA. 

The 3D imaging of segments using MRI or computer tomography would also allow 

for inertial segment characteristics to be made. These could then be used for more 

accurate modelling of movements, such as gait, and biomechanical variables, such as 

energetics, to be more accurately calculated in individuals with Achondroplasia. 

Whilst the measurement and use of inertial parameters and energetics were beyond 

the scope of this thesis, this body of work provides a caveat that normative in vivo 

data sets or more valid methods be used to improve the accuracy of results in these 

areas. The development of methodology in research for individuals with 

Achondroplasia would help validate the measures made in this thesis and provide 

more robust descriptions for the population as a whole. 

 

8.8 Conclusion 

This thesis has provided novel in vivo anthropometric and neuromuscular data of 

adult males with Achondroplasia. Furthermore, this thesis has extended the available 

gait related kinematic data for an adult population with Achondroplasia, with what 

appears to be the first to provide gait kinematics in an adult population without leg 

lengthening surgery. Many novel observations were made in all experimental 

Chapters. Firstly, total-body and segmental anthropometry and body composition 
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differ to controls, with the group with Achondroplasia being classified as osteopenic 

on the current clinical guidelines; although the definition was changed when 

presented relative to total-body and total-limb masses. V̇O2max  was lower as an 

absolute measure in the group with Achondroplasia compared to controls, but when 

expressed relative to TBM and FFM, differences between groups were again 

removed. V̇O2  during walking and running was higher in the group with 

Achondroplasia and was explained by their shorter legs. The walking and running C 

in the group with Achondroplasia was consistently higher than controls despite 

accounting for body mass and leg length. The specific force of VL and patella tendon 

compliance during knee extension iMVC was lower in the group with Achondroplasia 

compared to controls. In addition, during knee extension iMVC, the antagonists (here 

as the bicep femoris) were more active in the group with Achondroplasia than 

controls. Numerous differences in gait kinematics were observed between groups, 

which led to the group with Achondroplasia being more ‘flexed’ at the pelvis, hip, 

knee and ankle during walking, and more flexed at the pelvis and knee during running 

only compared to controls. A combined gait kinematic score (GPS) showed that gait 

of the group with Achondroplasia was quantifiably different to controls during 

walking and running; although the two groups were more similar when running. The 

combination of a greater upper body mass distribution, lower specific force, lower 

tendon compliance and greater differences in gait kinematics of the group with 

Achondroplasia are likely to contribute to their higher C during walking and running. 

The work within this thesis should undoubtedly aid clinicians in the assessment of 

anthropometry within individuals with Achondroplasia and act as a reference for 

future populations when performing functional tasks. 
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MANCHESTER METROPOLITAN UNIVERSITY 

 

MMU Cheshire 

 

Department of Exercise and Sport Science 

 

Information Sheet for Participants  

  

Title of Study:  

 

 

The neuromuscular and kinematic analysis of adult males with congenital 

skeletal dysplasia. 

 
 

Ethics Committee Reference Number: 11.03.14(i) 
 

Information Sheet 

 

1) This is an invitation to take part in a piece of research.  
 
You are being invited to take part in a research study. Before you decide whether or 
not to take part, it is important for you to understand why the research is being done 
and what it will involve. Please take time to read the following information carefully 
and discuss it with others if you wish. Ask us if there is anything that is not clear or if 
you would like more information. Please take time to decide whether or not you wish 
to take part. 
 
2) What is the purpose of the research? 

 

The purposes of the study are: 1) to identify any differences between the muscle 
structure, function and walking patterns between dwarf and average-statured young 
adults and 2) to determine whether any group difference remains when muscle size 
and stature are accounted for. 
 

3) Why is the study being performed? 
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There is limited data on the walking patterns, muscle structure and function, and fitness 
of individuals with skeletal dysplasia. This study aims to assess and describe these 
measures in individuals with skeletal dysplasia against adults of an average stature 
while performing relevant activities that include: maximal strength, walking and 
running Analysis of physiological and biomechanical variables during these tasks will 
help in identifying limiting factors to gait and muscle strength in individuals with SD. 

  
4) Why am I being asked to take part? 

 
You have been invited to partake in this research because you fit the inclusion criteria 
to be in one of the following groups: 
1. Skeletal Dysplasia adult 
2. You are less than 1.48m in stature, you are free from any neuromuscular 

condition or injury, you are aged 18-35 
3. Average-statured adult 
4. You are above 1.48m in stature, you are free from GH deficiency or any growth 

disorders, you are free from any neuromuscular disorder or injury, you are aged 
18-35, and your habitual physical activity levels match those of our Skeletal 
Dysplasia group 

The data from this study will inform applied scientist, physicians and physiotherapists 
on mobility in skeletal dysplasia. Our findings will also inform future research in this 
area. 
 
5) Do I have to take part? 

 
You are under no obligation to take part in this study. If, after reading this 
information sheet and asking any additional questions, you do not feel comfortable 
taking part in the study you do not have to. If you do decide to take part you are free 
to withdraw from the study at any point, without having to give a reason. If you do 
withdraw from the study you are free to take any personal data with you and this 
will not be included when the research is reported. If you decide not to take part or 
withdraw from the study, this will not affect your relationship with any of the staff 
at the Manchester Metropolitan University, Dream It Believe It Achieve It, who is 
funding the programme, or Dwarf Sports Association. 
 
If you do decide to take part you will be asked to sign an informed consent form 
stating your agreement to take part. You will be given a copy of the consent form 
together with this information sheet to keep.  
 

6) What will happen to me if I agree to take part?  

 

You will be asked to partake in one testing session where you will undergo the 
following tests (order not relevant): 
 
VO2max: This test will involve you running on a treadmill. This test will get harder every 
three minutes until you cannot carry on running. At this point the test will be 
stopped. During the test you will wear an apparatus (essentially a face mask) 
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attached to the front of your face (nose to chin) for you to breathe into, with the 
breathing tube partly resting on your chest. This will measure how much air you are 
breathing in and out per minute. At the end of this test you will feel tired and 
sometimes dizzy or sick. This feeling will pass after a few minutes. The mask that is 
used to collect gas can make some feel hot and/or claustrophobic. 
 
Exercise economy: Again you will wear a portable machine that measures gas 
inhalation and exhalation. You will walk for 5mins and then run at a low intensity for 
5mins whilst gas is collected. After the test you may feel hot and/or claustrophobic 
due to the mask, but the test is not strenuous. 
 
Biomechanical analysis: This test will involve you having reflective markers (small 
circular silver coloured balls) stuck using double sided sticky tape on your skin and 
then walking and running over a force plate. This is to measure how fast each body 
part is moving, as well as to estimate how much force you are putting through your 
joints. These tests are at very low intensities and you should not feel any discomfort 
other than normal walking and running. 
 
Muscle and tendon architecture and force production: This is a test that will measure 
your: quadriceps muscle strength (thigh muscle), volume and size; and your patella 
tendon length and size (knee tendon).  
 
Firstly, your muscle and tendon size will be measured using ultrasonography. This is 
a non-invasive test that requires no exertion from you. You will then be strapped into 
a chair with your left leg attached to a machine that measures force. You will push 
against the machine as hard as you can (it will not move) and your left quadriceps 
force production will be measured. You may feel some muscle fatigue at the end of 
this test. During the test, you will have a small electrical current passed through the 
working muscle; this is called electrical stimulation. Some may feel some discomfort 
during this part of the procedure. The electrical charge will be passed through two 
pads that are stuck onto the skin, on the thigh muscle area. In addition to this other 
markers will also be stuck onto your skin. These are electromyography electrodes 
and they measure the electrical activity in your muscle; your skin will be shaved of 
hair where the electrodes will be placed. The electrodes are entirely passive and so 
there is no discomfort felt during this part of the test. At any point, you may tell the 
investigator(s) that you are in discomfort and that you want to stop the test. 

 
DEXA scan- This procedure is somewhat similar to that of a medical X-ray. You will be 
asked to lie on a bed and remain as still as possible throughout the scan which will 
last approximately 10 minutes.  Each DEXA scan exposes you to an extremely minimal 
dose of radiation, which is well below the maximum recommended dose regarded 
as safe (see question 7 for more details). 
 

7) Are there any disadvantages or risks in taking part? 

 
Should you decide to take part in this research, you will be exposed to 

approximately 5µSv of radiation during assessment on the DEXA scanner. This dose 
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is extremely minimal and is equivalent to half the amount of natural background 
radiation you are subjected to over an average day. The IVA scan that will be used 
for assessment of the knee will expose you to around 2µSv. 

 
Throughout all tests you may feel slight discomfort. The VO2max test will exert you the 
most and you will feel most tired and possibly nauseous afterwards. This feeling will 
last for 10-15mins depending on the individual. Some may feel discomfort at the 
electrical stimulation but this is very short lived and again, at any point, you may tell 
the investigator(s) to stop the test at any point. 
 
8) What are the possible benefits of taking part? 

 
The benefits of the study may not relate directly to you, but will help increase the 
knowledge our understanding of skeletal dysplasia. The study aims to increase the 
knowledge of this group as well as opening further areas to research in the future. 
You may request immediate feedback of your tests, however full analysis of all 
participants will need to be carried out to give reliable feedback regarding the group 
you are in.  
 
9) Who are the members of the research team? 

 
The Principal Investigator of the study is David Sims (david.sims@stu.mmu.ac.uk). 
There are three supervisors in the team and these include: 

Dr. Christopher Morse  
Dr. Adrian Burden  
Dr. Gladys Pearson  

 

10) Who is funding the research? 

 
The funding for these studies comes from the ‘Dream It Believe It Achieve It’ charity 
that works closely with UK Dwarf Sports Association. The principal investigator is an 
employee of ‘Dream It Believe It Achieve It’. 
 

11) Who will have access to the data? 

 
All information collected during the course of the research will be kept confidential 
and will only be used for the purposes of the study. All data will be stored on a 
password-protected computer and the MMU secure network with your identity kept 
anonymous. 
 

The results of the study are likely to be communicated at conferences or published 
in scientific journals at some point in the future but in a manner that does not allow 
an individual’s identity to be determined. You may at any point ask to have your data 
removed from the study and/or publications. You are also entitled to a copy of any 
publication with your data included. To ask for copies please contact: 
 

David Sims (07169858@stu.mmu.ac.uk) 
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12) Who do I contact if I feel my rights have been violated? 

 

MMU Ethics Committee 
Registrar & Clerk to the Board of Governors 
Head of Governance and Secretariat Team 
Manchester Metropolitan University 
All Saints Building, All Saints 
Manchester  M15 6BH 
Tel: 0161 247 1390 

 
 
I confirm that the insurance policies in place at Manchester Metropolitan University 
will cover claims for negligence arising from the conduct of the University’s normal 
business, which includes research carried out by staff and by undergraduate and 
postgraduate students as part of their course. This does not extend to clinical 
negligence.  
 
13)  Finally, a thank you! 

 
Thank you for considering partaking in this study.  
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Appendix 2 – Plug-in-Gait marker set up. 

 

 

 

 

Figure A2.1: An example of the Plug in Gait Marker set for one control. Descriptions 

of the placement for each marker are given in Table A2.1. Note: this figure includes 

an ‘L’ and an ‘R’ in front of the marker acronym to define the left and right side, 

respectively. In some cases, tape (Zinc Oxide) was used to keep clothing from 

obstructing markers. 

  

LFHDRFHD

LSHO

LUPA

LFRM

LWRA

LASIRASI

RSHO

RUPA

RFRM

RWRA

LTHI

LKNE

LTIB

LANK

LTOERTOE

RANK

RTIB

RKNE

RTHI

LBHD RBHD

C7

T10

RBAK

LPSI RPSI

RELBLELB

LFIN
RFIN

RHEELHEE

RWBALWBA

a) b)

CLAV

STRN
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Table A2.1: Marker definitions, locations and identifications for the Plug-in-Gait marker set. 

Marker Acronym Defines the: Location Identification 

FHD Origin and plane of 
the head 

Front of the head Located approximately over 
the left temple. 

BHD Together with the 
FHD, define the 
orientation of the 
head 

Back of the head Placed on the back of the 
head, in a horizontal plane of 
the front. 

C7 C7, CLAV, T10 and 
STRN define the 
sagittal plane of the 
torso 

Spinous process of the 
7th cervical vertebrae 

The most prominent spinal 
process on the back of the 
neck. 

CLAV Jugular Notch where 
the clavicle meets the 
sternum 

The marker should be placed 
on the bone and not in the 
jugular notch. 

T10 Spinous Process of the 
10th thoracic vertebrae 

This marker position is located 
by finding the inferior angle of 
the scapula. Move horizontally 
across to the vertebrae. This 
should be T7. Palpate three 
vertebrae inferiorly. 

STRN Xiphoid process of the 
Sternum. 

Placed on the bone just above 
the Xiphoid process. 

RBAK Rotation of the torso Scapula Mid scapula 

SHO Glenohumeral joint Acromio-clavicular joint 
 

UPA Plane of the humerus 
(upper arm) 

Over the upper (right) 
and lower (left) lateral 
1/3 surface of the upper 
arm. 

In line with the projection from 
SHO and ELB markers. 

ELB Elbow joint lateral epicondyle 
approximating elbow 
joint axis 

 

FRA Plane of the fore arm Over the upper (right) 
and lower (left) lateral 
1/3 surface of the fore 
arm. 

In line with the projection from 
ELB and FIN markers. 

WRA Wrist joint Styloid process of the 
radius (thumb side) 

 

WRB Styloid process of the 
ulna (little finger side) 

 

FIN Axes of the hand 2nd Metatarsal head Placed on the dorsum of the 
hand just below the head of 
the 2nd metatarsal 
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ASI HJC and pelvic axes. Anterior Superior Iliac 
Spine. 

Directly over the anterior 
superior iliac spines. 

PSI Together with ASI, 
define the axes of the 
pelvis. 

Posterior Superior Iliac 
Spine. 

Bony prominences which are 
below the sacro-iliac joint 
(dimple). 

THI Plane of the femur 
(thigh) 

Over the upper (right) 
and lower (left) lateral 
1/3 surface of the thigh. 

In line with the projection from 
HJC (greater trochanter) and 
KNE marker. 

KNE Knee Joint Lateral epicondyle 
 

TIB Plane of the tibia 
(shank) 

Over the upper (right) 
and lower (left) lateral 
1/3 surface of the 
shank. 

In line with the projection from 
KNE and ANK markers. 

ANK Ankle Joint Lateral malleolus Most lateral aspect of the bony 
process. 

TOE Toe (anterior of foot 
and dorsal surface) - 
Together with the 
HEE, defines the plane 
of the foot. 

Dorsal surface of the 
foot. 

Head of the second metatarsal 
head. 

HEE Heel (posterior of 
foot) - Together with 
the TOE, defines the 
plane of the foot. 

Most posterior part of, 
and central of, the 
calcaneus. 

Height is not important but 
must be aligned with the TOE 
marker to define the long axis 
of the foot. 

To distinguish between markers and their definitions, the central markers are shown in white, the 
upper appendicular markers are shown in light grey and the lower appendicular markers are 
shown in dark grey. 
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Appendix 3 – Worked example of the Gait Profile Score 

 

 

Table A3.1: An example of the knee flexion/extension gait variable score at self-
selected walking. Note: this example is for a single gait cycle splined to 20 data 
points. 

A (𝑥u,�)   C (𝑥̅u,����)   Gait Variable Score Calculation 

Knee 
Flexion (°) 

  
Knee 

Flexion (°) 
  𝐴	 −	𝐶< ∑𝐴	 −	𝐶< 

∑𝐴	 −	𝐶<20  i∑𝐴	 −	𝐶<20  

11.0   5.8   26.9 3704.0 37.0 6.1 
20.9   12.6   67.9       
28.3   16.5   137.8       
27.6   16.1   132.5       
21.0   12.6   71.3       
13.9   8.3   31.8       
9.7   4.5   27.1       
9.2   2.0   51.3       

11.4   1.5   98.6       
16.2   4.1   144.1       
25.6   11.2   207.9       
41.2   22.6   346.6       
59.3   37.1   494.1       
71.9   49.8   486.8       
72.9   53.5   377.5       
64.1   46.8   299.8       
50.5   32.9   310.7       
33.5   17.2   263.1       
15.4   4.9   110.6       
5.0   0.9   16.3       

A, participant with Achondroplasia (ith); C, control (𝑥̅). 
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Table A3.2: An example of the gait profile score calculation of a single participant 

with Achondroplasia at self-selected walking speed.  

GVS GVS (°) 𝐺𝑉𝑆< ∑𝐺𝑉𝑆< 
∑𝐺𝑉𝑆<15  i∑𝐺𝑉𝑆<15  

Left Pelvis Sagittal 4.9 23.9 2248.3 149.9 12.2 

Left Hip Sagittal 3.5 12.0       

Left Knee Sagittal 13.5 182.8       

Left Ankle Sagittal 9.4 88.7       

Left Pelvis Frontal 2.4 5.9       

Left Hip Frontal 3.6 13.1       

Left Pelvis Transverse 9.4 88.3       

Left Hip Transverse 29.0 838.4       

Left Foot Transverse 1.7 3.0       

Right Hip Sagittal 7.9 62.8       

Right Knee Sagittal 16.4 268.9       

Right Ankle Sagittal 10.0 100.7       

Right Hip Frontal 5.4 29.4       

Right Hip Transverse 23.0 527.3       

Right Foot Transverse 1.8 3.1       
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Appendix 4 – Inferential statistics associated with Chapter 7  

 
  

Table A4.1: Main effects and pairwise comparison P values for the between group 

comparisons of discrete kinematic measures of the pelvis (P1-7) and average pelvis 

position at each walking speed. 

Variable ME 0.56 0.83 1.11 1.39 1.67 1.96 SSW 

P1 0.016 0.038 0.036 0.027 0.016 0.015 0.005 0.020 

P2 0.009 0.019 0.016 0.027 0.014 0.003 0.002 0.010 

P3 0.007 0.015 0.013 0.018 0.009 0.003 0.004 0.007 

P4 0.490 < No main effect > 

P5 0.430 < No main effect > 

P6 0.015 0.436 0.602 0.023 < 0.001 < 0.001 0.001 0.061 

P7 0.003 0.795 0.121 0.009 < 0.001 0.002 0.002 0.005 

Average Joint Position 0.006 0.01 0.014 0.017 0.006 0.004 0.004 0.007 

ME, Main Effect                 

  

 
                

Table A4.2: Main effects and pairwise comparison P values for the between group 

comparisons of discrete kinematic measures of the hip (H1-9) and average hip position 

at each walking speed. 

Variable ME 0.56 0.83 1.11 1.39 1.67 1.96 SSW 

H1 0.295 < No main effect > 

H2 0.098 < No main effect > 

H3 0.232 < No main effect > 

H4 0.260 < No main effect > 

H5 0.344 < No main effect > 

H6 0.771 < No main effect > 

H7 0.739 < No main effect > 

H8 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 0.001 < 0.001 

H9 0.100 < No main effect > 

Average Joint Position 0.037 0.087 0.066 0.126 0.018 0.006 0.027 0.063 

ME, Main Effect                 
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Table A4.3: Main effects and pairwise comparison P values for the between group 

comparisons of discrete kinematic measures of the knee (K1-7) and average knee 

position at each walking speed. 

Variable ME 0.56 0.83 1.11 1.39 1.67 1.96 SSW 

K1 0.892 < No main effect > 

K2 0.008 0.044 0.001 0.004 0.023 0.092 0.023 0.448 

K3 0.005 0.040 < 0.001 0.004 0.023 0.078 0.019 0.378 

K4 0.000 < 0.001 < 0.001 0.001 0.001 0.002 0.001 < 0.001 

K5 0.704 < No main effect > 

K6 0.036 0.073 0.118 0.080 0.034 0.023 0.024 0.034 

K7 0.005 0.035 0.007 0.013 0.006 0.002 0.002 0.007 

Average Joint Position 0.004 0.009 0.01 0.01 0.002 0.004 0.003 0.012 

ME, Main Effect                 

  

 
                

Table A4.4: Main effects and pairwise comparison P values for the between group 

comparisons of discrete kinematic measures of the ankle (A1-9) and average ankle 

position at each walking speed. 

Variable ME 0.56 0.83 1.11 1.39 1.67 1.96 SSW 

A1 < 0.001 0.002 0.002 < 0.001 < 0.001 < 0.001 0.001 < 0.001 

A2 < 0.001 < 0.001 0.001 0.001 0.001 0.002 < 0.001 < 0.001 

A3 0.112 < No main effect > 

A4 0.594 < No main effect > 

A5 0.636 < No main effect > 

A6 0.036 0.073 0.118 0.080 0.034 0.023 0.024 0.175 

A7 0.602 < No main effect > 

A8 0.916 < No main effect > 

A9 0.473 < No main effect > 

Average Joint Position < 0.001 < 0.001 0.001 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

ME, Main Effect                 
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Table A4.6: Main effects and pairwise comparison P values for the between group comparisons 

of discrete kinematic measures of the pelvis (P1-7) and average pelvis position at each running 

speed. 

  ME 1.67 1.96 2.22 2.50 2.78 3.06 3.33 

P1 0.084 < No main effect > 

P2 0.082 < No main effect > 

P3 0.057 < No main effect > 

P4 0.123 < No main effect > 

P5 0.657 < No main effect > 

P6 0.166 < No main effect > 

P7 0.013 0.288 0.005 0.003 0.160 0.042 0.281 0.006 

Average Difference 

in Joint Position 
0.038 0.034 < 0.001 0.104 0.041 0.161 0.240 0.331 

ME, Main Effect                 

                  

Table A4.7: Main effects and pairwise comparison P values for the between group comparisons 

of discrete kinematic measures of the hip (H1-9) and average hip position at each running 

speed. 

  ME 1.67 1.96 2.22 2.50 2.78 3.06 3.33 

H1 0.641 < No main effect > 

H2 0.689 < No main effect > 

H3 0.789 < No main effect > 

H4 0.258 < No main effect > 

H5 0.412 < No main effect > 

H6 0.261 < No main effect > 

H7 0.299 < No main effect > 

H8 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 

H9 0.008 0.020 0.007 0.005 0.012 0.006 0.017 0.007 

Average Difference 

in Joint Position 
0.570 < No main effect > 

ME, Main Effect                 
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